Subspace independent component analysis using vector kurtosis

نویسندگان

  • Alok Sharma
  • Kuldip K. Paliwal
چکیده

This discussion presents a new perspective of subspace independent component analysis (ICA). The notion of a function of cumulants (kurtosis) is generalized to vector kurtosis. This vector kurtosis is utilized in the subspace ICA algorithm to estimate subspace independent components. One of the main advantages of the presented approach is its computational simplicity. The experiments have shown promising results in estimating subspace independent components. 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Subspace Analysis Using Three Scatter Matrices

Abstract: In independent subspace analysis (ISA) one assumes that the components of the observed random vector are linear combinations of the components of a latent random vector with independent subvectors. The problem is then to find an estimate of a transformation matrix to recover the independent subvectors. Regular independent component analysis (ICA) is a special case. In this paper we sh...

متن کامل

Efficiency Measurement of Clinical Units Using Integrated Independent Component Analysis-DEA Model under Fuzzy Conditions

Background and Objectives: Evaluating the performance of clinical units is critical for effective management of health settings. Certain assessment of clinical variables for performance analysis is not always possible, calling for use of uncertainty theory. This study aimed to develop and evaluate an integrated independent component analysis-fuzzy-data envelopment analysis approach to accurate ...

متن کامل

Denoising using local projective subspace methods

In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE) and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high dimensional feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of kurtosis or the...

متن کامل

Towards a general independent subspace analysis

The increasingly popular independent component analysis (ICA) may only be applied to data following the generative ICA model in order to guarantee algorithmindependent and theoretically valid results. Subspace ICA models generalize the assumption of component independence to independence between groups of components. They are attractive candidates for dimensionality reduction methods, however a...

متن کامل

Sequential row-column independent component analysis for face recognition

This paper presents a novel subspace method called sequential row–column independent component analysis (RC-ICA) for face recognition. Unlike the traditional ICA, in which the face image is transformed into a vector before calculating the independent components (ICs), RC-ICA consists of two sequential stages—an image row-ICA followed by a column-ICA. There is no image-to-vector transformation i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2006