Heterojunctions between zinc oxide nanostructures and organic semiconductor

نویسنده

  • Amal Wadeasa
چکیده

Lighting is a big business, lighting consumes considerable amount of the electricity. These facts motivate for the search of new illumination technologies that are efficient. Semiconductor light emitting diodes (LEDs) have huge potential to replace the traditional primary incandescent lighting sources. They are two basic types of semiconductor LEDs being explored: inorganic and organic semiconductor light emitting diodes. While electroluminescence from p-n junctions was discovered more than a century ago, it is only from the 1960s that their development has accelerated as indicated by an exponential increase of their efficiency and light output, with a doubling occurring about every 36 months, in a similar way to Moore's law in electronics. These advances are generally attributed to the parallel de velopment o f semiconductor te chnologies, optics a nd m aterial science. Organic light emitting diodes (OLEDs) have rapidly matured during the last 30 years driven by the possibility to create large area light-emitting diodes and displays. Another driving force to specifically use semiconducting polymers is the possibility to build the OLED on conventional flexible substrates via low-cost manufacturing techniques such as printing techniques, which open the way for large area productions. This thesis deals with t he demonstration a nd investigation of heterojunction LEDs ba sed o n p-organic semiconductor and n-ZnO nanostructures. The ZnOorganic heterojunctions are fabricated using low cost and simple solution process without the need for sophisticated vacuum equipments. Both ZnO-nanostructures and the organic materials were grown on variety of substrates (i.e. silicon, glass and plastic substrates) using low temperature methods. The growth mechanism of the ZnO nanostructures has been systematically investigated with major focus in ZnO nanorods/nanowires. Different organic semiconductor materials and device configurations are explored starting with single polymer emissive layer ending up with separate emissive and blocking layers, or even blends. Interestingly, the photoluminescence and electroluminescence spectra of the hybrid LEDs provided a broad emission band covering entirely the visible spectrum [∼400-∼800nm]. The hybrid light emitting diode has a white emission attributed to ZnO intrinsic defects and impurities in combination with the electroluminescence from the conjugated polymers. The ZnO nanostructures in contact with a high workfunction electrode constitute an air stable electron injecting contact for the organic semiconductor. Hence, we have shown that a white light emission can be achieved in a ZnO-organic hybrid light emitting diode using cheap and low temperature growth techniques for both organic and inorganic materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants

In the present study, comparison of  photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...

متن کامل

Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants

In the present study, comparison of  photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...

متن کامل

Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications

Wide band gap II-VI semiconductor nanostructures have been extensively studied according to their great potentials for optoelectronic applications, while heterojunctions are fundamental elements for modern electronic and optoelectronic devices. Subsequently, a great deal of achievements in construction and optoelectronic applications of heterojunctions based on II-VI compound semiconductor one-...

متن کامل

Application of Semiconductor Photocatalysis for Effective Elimination of Organic Contaminants from Sewage

The ZnO/SiO2 semiconductor nanophotocatalysis was synthesized via sol-gel method. Also, theplatinum particles were loaded on the ZnO/SiO2 nanoparticles by photoreductive method. Thestructure of catalyst was confirmed by X-ray diffraction (XRD), scanning electron microscopy(SEM) andfourier transform infrared spectroscopy (FT-IR). The XRD patterns of ZnO particlesdisplayed the nanoparticles have ...

متن کامل

Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion

The goal of this thesis is the development of scalable, low cost synthesis of metal oxide nanostructures based electrodes and to correlate the chemical modifications with their energy conversion performance. Methods in energy conversion in this thesis have focused on two aspects; a potentiometric chemical sensor was used to determine the analytical concentration of some components of the analyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011