The identification of E2F1-specific target genes.
نویسندگان
چکیده
The E2F family of transcriptional regulators consists of six different members. Analysis of E2F-regulated promoters by using cultured cells suggests that E2Fs may have redundant functions. However, animal studies have shown that loss of individual E2Fs can have distinct biological consequences. Such seemingly conflicting results could be due to a difference in E2F-mediated regulation in cell culture vs. animals. Alternatively, there may be genes that are specifically regulated by an individual E2F which have not yet been identified. To investigate this possibility further, we have analyzed gene expression in E2F1 nullizygous mice. We found that loss of E2F1 did not cause changes in expression of known E2F target genes, suggesting that perhaps E2F1-specific promoters are distinct from known E2F target promoters. Therefore, we used oligonucleotide microarrays to identify mRNAs whose expression is altered on loss of E2F1. We demonstrate by chromatin immunoprecipitation that several of the promoters that drive expression of the deregulated mRNAs selectively recruit E2F1, but not other E2Fs, and this recruitment is via an element distinct from a consensus E2F binding site. To our knowledge, these are as yet undocumented examples of promoters being occupied in asynchronously growing cells by a single E2F family member. Interestingly, the E2F1-specific target genes that we identified encode proteins having functions quite different from the function of known E2F target genes. Thus, whereas E2F1 may share redundant functions in cell growth control with other E2F family members, it may also play an important biological role distinct from the other E2Fs.
منابع مشابه
P-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats
Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....
متن کاملGestational diabetes leads to down-regulation of CDK4-pRB-E2F1 pathway genes in pancreatic islets of rat offspring
Objective(s): The link between a hyperglycemic intrauterine environment and the development of diabetes later in life has been observed in offspring exposed to gestational diabetes mellitus (GDM), but the underlying mechanisms for this phenomenon are still not clear. Reduced β-cells mass is a determinant in the development of diabetes (type 1 and type 2 diabetes). Some recent studies have provi...
متن کاملGene expression changes in response to E2F1 activation.
The p16/RB/E2F regulatory pathway, which controls transit through the G1 restriction point of the cell cycle, is one of the most frequent targets of genetic alterations in human cancer. Any of these alterations results in the deregulated expression of the transcription factor E2F, one of the key mediators of cell cycle progression. Under these conditions, E2F1 also participates in the induction...
متن کاملFOXO transcription factors control E2F1 transcriptional specificity and apoptotic function.
The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction of multiple apoptotic genes. We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-media...
متن کاملTumor and Stem Cell Biology FOXO Transcription Factors Control E2F1 Transcriptional Specificity and Apoptotic Function
The transcription factor E2F1 is a key regulator of proliferation and apoptosis but the molecular mechanisms that mediate these cell fate decisions remain unclear. Here, we identify FOXO transcription factors as E2F1 target genes that act in a feed-forward regulatory loop to reinforce gene induction ofmultiple apoptotic genes.We found that E2F1 forms a complex with FOXO1 and FOXO3. RNAi-mediate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 99 6 شماره
صفحات -
تاریخ انتشار 2002