Ciclesonide uptake and metabolism in human alveolar type II epithelial cells (A549)
نویسندگان
چکیده
BACKGROUND Ciclesonide is a novel inhaled corticosteroid for the treatment of airway inflammation. In this study we investigated uptake and in vitro metabolism of ciclesonide in human alveolar type II epithelial cells (A549). Ciclesonide uptake was compared with fluticasone propionate, an inhaled corticosteroid that is not metabolized in lung tissue. A549 cells were incubated with 2 x 10(-8) M ciclesonide or fluticasone propionate for 3 to 30 min to determine uptake; or with 2 x 10(-8) M ciclesonide for 1 h, followed by incubation with drug-free buffer for 3, 6, and 24 h to analyze in vitro metabolism. High performance liquid chromatography with tandem mass spectrometry was used to measure the concentrations of both corticosteroids and metabolites. RESULTS At all time points the mean intracellular concentration was higher for ciclesonide when compared with fluticasone propionate. Activation of ciclesonide to desisobutyryl-ciclesonide (des-CIC) was confirmed and conjugates of des-CIC with fatty acids were detected. The intracellular concentration of ciclesonide decreased over time, whereas the concentration of des-CIC remained relatively stable: 2.27 to 3.19 pmol/dish between 3 and 24 h. The concentration of des-CIC fatty acid conjugates increased over time, with des-CIC-oleate being the main metabolite. CONCLUSION Uptake of ciclesonide into A549 cells was more efficient than that of the less lipophilic fluticasone propionate. Intracellular concentrations of the pharmacologically active metabolite des-CIC were maintained for up to 24 h. The local anti-inflammatory activity of ciclesonide in the lung may be prolonged by the slow release of active drug from the depot of fatty acid esters.
منابع مشابه
Metabolism of ciclesonide in the upper and lower airways: review of available data
Ciclesonide is a novel corticosteroid (CS) for the treatment of asthma and allergic rhinitis. After administration, the parent compound ciclesonide is converted by intracellular airway esterases to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC). We investigated the in vitro activation of ciclesonide and further esterification of des-CIC to (mainly) des-CIC oleate in...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملModulation of cellular transport characteristics of the human lung alveolar epithelia
Among the drug delivery and targeting (DDT) routes, lung alveolar epithelium has been given enormous attentions in terms of the delivery of a wide range of macromolecules such as gene- or protein-based nanopharmaceuticals. However, little is known about cellular modulation of lung transport characteristics by endogenous and/or exogenous agents. Thus, in the current study, impact of dexamethason...
متن کاملEndocytic uptake of FITC-albumin by human alveolar epithelial cell line A549.
The uptake mechanism of FITC-labeled albumin (FITC-albumin) was examined in human alveolar epithelial cell line A549. FITC-albumin uptake by A549 cells was time- and temperature-dependent, and was markedly suppressed at 4°C compared with that at 37°C. The uptake was saturable, and was mediated by a high-affinity, low-capacity system and by a low-affinity, high-capacity system. In the following ...
متن کاملEffect of thalidomide on the alveolar epithelial cells in the lung fibrosis induced by bleomycin in mice
Introduction: Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive and usually fatal lung disease of unknown etiology for which no effective treatments currently exist. In the adults type I and II pneumocytes, forms Components of the alveolar epithelial cells. In this study, we investigated the effect of thalidomide on the alveolar epithelial cells (type I and II pneumocytes) in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- BMC Pharmacology
دوره 7 شماره
صفحات -
تاریخ انتشار 2007