Exceptional Collections and del Pezzo Gauge Theories
نویسنده
چکیده
Stacks of D3-branes placed at the tip of a cone over a del Pezzo surface provide a way of geometrically engineering a small but rich class of gauge/gravity dualities. We develop tools for understanding the resulting quiver gauge theories using exceptional collections. We prove two important results for a general quiver gauge theory: 1) we show the ordering of the nodes can be determined up to cyclic permutation and 2) we derive a simple formula for the ranks of the gauge groups (at the conformal point) in terms of the numbers of bifundamentals. We also provide a detailed analysis of four node quivers, examining when precisely mutations of the exceptional collection are related to Seiberg duality.
منابع مشابه
Dibaryons from Exceptional Collections
We discuss aspects of the dictionary between brane configurations in del Pezzo geometries and dibaryons in the dual superconformal quiver gauge theories. The basis of fractional branes defining the quiver theory at the singularity has a K-theoretic dual exceptional collection of bundles which can be used to read off the spectrum of dibaryons in the weakly curved dual geometry. Our prescription ...
متن کاملSeiberg Duality is an Exceptional Mutation
The low energy gauge theory living on D-branes probing a del Pezzo singularity of a noncompact Calabi-Yau manifold is not unique. In fact there is a large equivalence class of such gauge theories related by Seiberg duality. As a step toward characterizing this class, we show that Seiberg duality can be defined consistently as an admissible mutation of a strongly exceptional collection of cohere...
متن کاملThree-block exceptional collections over Del Pezzo surfaces
We study complete exceptional collections of coherent sheaves over Del Pezzo surfaces, which consist of three blocks such that inside each block all Ext groups between the sheaves are zero. We show that the ranks of all sheaves in such a block are the same and the three ranks corresponding to a complete 3-block exceptional collection satisfy a Markov-type Diophantine equation that is quadratic ...
متن کاملOn the geometry of quiver gauge theories ( Stacking exceptional collections )
In this paper we advance the program of using exceptional collections to understand the gauge theory description of a D-brane probing a Calabi-Yau singularity. To this end, we strengthen the connection between strong exceptional collections and fractional branes. To demonstrate our ideas, we derive a strong exceptional collection for every Y p,q singularity, and also prove that this collection ...
متن کاملCurves and Line Bundles on Del Pezzo Surfaces
We extend the results of Pareschi [Pa] on the constancy of the gonality and Clifford index of smooth curves in a complete linear system on Del Pezzo surfaces of degrees ≥ 2 to the case of Del Pezzo surfaces of degree 1, where we explicitly classify the cases where the gonality and Clifford index are not constant. We also classify all cases of exceptional curves on Del Pezzo surfaces, which turn...
متن کامل