Transit peptide elements mediate selective protein targeting to two different types of chloroplasts in the single-cell C4 species Bienertia sinuspersici
نویسندگان
چکیده
Bienertia sinuspersici is a terrestrial plant that performs C4 photosynthesis within individual cells through operating a carbon concentrating mechanism between different subcellular domains including two types of chloroplasts. It is currently unknown how differentiation of two highly specialized chloroplasts within the same cell occurs as no similar cases have been reported. Here we show that this differentiation in photosynthetic cells of B. sinuspersici is enabled by a transit peptide (TP) mediated selective protein targeting mechanism. Mutations in the TPs cause loss of selectivity but not general loss of chloroplast import, indicating the mechanism operates by specifically blocking protein accumulation in one chloroplast type. Hybrid studies indicate that this selectivity is transferable to transit peptides of plants which perform C4 by cooperative function of chloroplasts between two photosynthetic cells. Codon swap experiments as well as introducing an artificial bait mRNA show that RNA affects are not crucial for the sorting process. In summary, our analysis shows how the mechanism of subcellular targeting to form two types of chloroplast within the same cell can be achieved. This information is not only crucial for understanding single-cell C4 photosynthesis; it provides new insights in control of subcellular protein targeting in cell biology.
منابع مشابه
The C-terminus of Bienertia sinuspersici Toc159 contains essential elements for its targeting and anchorage to the chloroplast outer membrane
Most nucleus-encoded chloroplast proteins rely on an N-terminal transit peptide (TP) as a post-translational sorting signal for directing them to the organelle. Although Toc159 is known to be a receptor for specific preprotein TPs at the chloroplast surface, the mechanism for its own targeting and integration into the chloroplast outer membrane is not completely understood. In a previous study,...
متن کاملThe unique structural and biochemical development of single cell C4 photosynthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae)
Temporal and spatial patterns of photosynthetic enzyme expression and structural maturation of chlorenchyma cells along longitudinal developmental gradients were characterized in young leaves of two single cell C4 species, Bienertia sinuspersici and Suaeda aralocaspica Both species partition photosynthetic functions between distinct intracellular domains. In the C4-C domain, C4 acids are formed...
متن کاملThe cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species.
Recently, three Chenopodiaceae species, Bienertia cycloptera, Bienertia sinuspersici, and Suaeda aralocaspica, were shown to possess novel C(4) photosynthesis mechanisms through the compartmentalization of organelles and photosynthetic enzymes into two distinct regions within a single chlorenchyma cell. Bienertia has peripheral and central compartments, whereas S. aralocaspica has distal and pr...
متن کاملResolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici.
Bienertia sinuspersici is a land plant known to perform C(4) photosynthesis through the location of dimorphic chloroplasts in separate cytoplasmic domains within a single photosynthetic cell. A protocol was developed with isolated protoplasts to obtain peripheral chloroplasts (P-CP), a central compartment (CC), and chloroplasts from the CC (C-CP) to study the subcellular localization of photosy...
متن کاملProof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae).
Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic r...
متن کامل