Comparison of the performance of SSPH and MLS basis functions for two-dimensional linear elastostatics problems including quasistatic crack propagation
نویسندگان
چکیده
We use symmetric smoothed particle hydrodynamics (SSPH) and moving least squares (MLS) basis functions to analyze six linear elastostatics problems by first deriving their Petrov-Galerkin approximations. With SSPH basis functions one can approximate the trial solution and its derivatives by using different basis functions whereas with MLS basis functions the derivatives of the trial solution involve derivatives of the basis functions used to approximate the trial solution. The class of allowable kernel functions for SSPH basis functions includes constant functions which are excluded in MLS basis functions if derivatives of the trial solution are also to be approximated. We compare results for different choices of weight functions, size of the compact support of the weight function, order of complete polynomials, and number of particles in the problem domain. The two basis functions are also used to analyze crack initiation and propagation in plane stress mode-I deformations of a plate made of a linear elastic isotropic and homogeneous material with particular emphasis on the computation of the T-stress. The crack trajectories predicted by using the two basis functions agree well with those found experimentally.
منابع مشابه
Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems
We discuss the symmetric smoothed particle hydrodynamics (SSPH) method for generating basis functions for a meshless method. It admits a larger class of kernel functions than some other methods, including the smoothed particle hydrodynamics (SPH), the modified smoothed particle hydrodynamics (MSPH), the reproducing kernel particle method (RKPM), and the moving least squares (MLS) methods. For f...
متن کاملA two dimensional Simulation of crack propagation using Adaptive Finite Element Analysis
Finite element method (FEM) is one of the most famous methods which has many applications in varies studies such as the study of crack propagation in engineering structures. However, unless extremely fine meshes are employed, problem arises in accurately modelling the singular stress field in the singular element area around the crack tip. In the present study, the crack growth simulation has b...
متن کاملPredicting Depth and Path of Subsurface Crack Propagation at Gear Tooth Flank under Cyclic Contact Loading
In this paper, a two-dimensional computational model is proposed for predicting the initiation position and propagation path of subsurface crack of spur gear tooth flank. In order to simulate the contact of teeth, an equivalent model of two contacting cylinders is used. The problem is assumed to be under linear elastic fracture mechanic conditions and finite element method is used for numerical...
متن کاملA General Boundary Element Formulation for The Analysis of Viscoelastic Problems
The analysis of viscoelastic materials is one of the most important subjects in engineering structures. Several works have been so far made for the integral equation methods to viscoelastic problems. From the basic assumptions of viscoelastic constitutive equations and weighted residual techniques, a simple but effective Boundary Element (BE) formulation is developed for the Kelvin viscoelastic...
متن کاملOn the Calculation of Deflection of a Semitrailer Chassis under Various Loading Conditions: an Experimental and Numerical Investigation
In this paper, a simple approach is presented for the calculation of deflection of a semi trailer chassis since the less deflection become a unique selling point of a semi trailer. First of all, by using the 3D data of the chassis a function for the moment of inertia of the cross section is created and then the chassis is modelled as a Euler Bernoulli Beam. Different loading conditions coming f...
متن کامل