Space filling minimal surfaces and sphere packings

نویسنده

  • Veit Elser
چکیده

A space filling minimal surface is defined tu be any embedded minimal surface without boundary with the property (haï the area and genus enclosed by any large spherical

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal energy packings and collapse of sticky tangent hard-sphere polymers.

We enumerate all minimal energy packings (MEPs) for small single linear and ring polymers composed of spherical monomers with contact attractions and hard-core repulsions and compare them to corresponding results for monomer packings. We define and identify "dividing surfaces" in polymer packings, which reduce the number of arrangements that satisfy hard-sphere and covalent-bond constraints. Co...

متن کامل

Deriving Finite Sphere Packings

Sphere packing problems have a rich history in both mathematics and physics; yet, relatively few analytical analyses of sphere packings exist, and answers to seemingly simple questions are unknown. Here, we present an analytical method for deriving all packings of n spheres in R3 satisfying minimal rigidity constraints (≥ 3 contacts per sphere and ≥ 3n− 6 total contacts). We derive such packing...

متن کامل

Densest local sphere-packing diversity. II. Application to three dimensions.

The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius R(min)(N) of a fixed central sphere of the same size are obtained for selected values of N up to N=1054. In the predecessor to this paper [A. B. Hopkins, F. H. Stillinger, and S. Torquato, Phys. Rev. E 81, 041305 (2010)], we described our method for finding the putative densest packings of N spher...

متن کامل

Sphere Packings in Hyperbolic Space: Periodicity and Continuity

We prove that given a fixed radius r, the set of isometry-invariant probability measures supported on “periodic” radius-r sphere packings in hyperbolic space Hn is dense in the space of all isometry-invariant probability measures on the space of radius-r sphere packings when n = 2, 3. By a periodic packing, we mean one with cofinite symmetry group. As a corollary, we prove the maximum density a...

متن کامل

Self-similar space-filling packings in three dimensions

We develop an algorithm to construct new self-similar space-filling packings of spheres. Each topologically different configuration is characterized by its own fractal dimension. We also find the first bicromatic packing known up to now.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016