New Methods for Computational Fluid Dynamics Modeling of Carotid Artery from Magnetic Resonance Angiography

نویسندگان

  • Juan R. Cebral
  • Peter J. Yim
  • Rainald Löhner
  • Orlando Soto
  • Hani Marcos
  • Peter L. Choyke
چکیده

Computational fluid dynamics (CFD) models of the carotid artery are constructed from contrast-enhanced magnetic resonance angiography (MRA) using a deformable model and a surface-merging algorithm. Physiologic flow conditions are obtained from cine phase-contrast MRA at two slice locations below and above the carotid bifurcation. The methodology was tested on image data from a rigid flow-through phantom of a carotid artery with 65% degree stenosis. Predicted flow patterns are in good agreement with MR flow measurements at intermediate slice locations. Our results show that flow in a rigid flowthrough phantom of the carotid bifurcation with stenosis can be simulated accurately with CFD. The methodology was then tested on flow and anatomical data from a normal human subject. The sum of the instantaneous flows measured at the internal and external carotids differs from that at the common carotid, indicating that wall compliance must be modeled. Coupled fluid-structure calculations were able to reproduce the significant dampening of the velocity waveform observed between different slices along the common carotid artery. Visualizations of the blood flow in a compliant model of the carotid bifurcation were produced. A comparison between compliant and rigid models shows significant differences in the time-dependent wall shear stress at selected locations. Our results confirm that image-based CFD techniques can be applied to the modeling of hemodynamics in compliant carotid arteries. These capabilities may eventually allow physicians to enhance current image-based diagnosis, and to predict and evaluate the outcome of interventional procedures non-invasively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI.

A thorough understanding of the relationship between local hemodynamics and plaque progression has been hindered by an inability to prospectively monitor these factors in vivo in humans. In this study a novel approach for noninvasively reconstructing artery wall thickness and local hemodynamics at the human carotid bifurcation is presented. Three-dimensional (3D) models of the lumen and wall bo...

متن کامل

Level Set Based Integration of Segmentation and Computational Fluid Dynamics for Flow Correction in Phase Contrast Angiography

RATIONALE AND OBJECTIVES A novel method to correct flow data from magnetic resonance phase contrast (MR-PC) angiography, based on combining computational fluid dynamics and segmentation in a level set framework, was developed and tested in this study. MATERIALS AND METHODS The MR-PC velocity data was used in a partial differential equation-based level set method for vessel segmentation. The r...

متن کامل

Syphilitic arteritis involving the origin of the cervical internal carotid artery.

We report a case of meningovascular syphilis in a young adult woman presenting with left hemiparesis due to near occlusion of proximal cervical internal carotid with subacute middle cerebral artery territory infarction. Diagnosis was made on the basis of positive serum, and spinal fluid serology for syphilis, carotid Doppler, and magnetic resonance angiography, as well as improvement after intr...

متن کامل

Unsteady-state Computational Fluid Dynamics Modeling of Hydrogen Separation from H2/N2 Mixture

3D modeling of Pd/α-Al2O3 hollow fiber membrane by using computational fluid dynamic for hydrogen separation from H2/N2 mixture was considered in steady and unsteady states by using the concept of characteristic time. Characteristic time concept could help us to design and calculate surface to volume ratio and membrane thickness, and adjust the feed conditions. The contribution of resistance be...

متن کامل

Combination of Magnetic Resonance Angiography and Computational Fluid Dynamics May Predict the Risk of Stroke in Patients with Asymptomatic Carotid Plaques

BACKGROUND Atherosclerosis plaques in the carotid arteries frequently have been found in patients with stroke. However, the pathogenesis of carotid plaque from asymptomatic to cerebrovascular events is a complex process which is still not completely understood. We aimed to investigate the prognosis of asymptomatic carotid atherosclerotic plaques by use of magnetic resonance angiography (MRA) co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001