FIRE in ImageCLEF 2007

نویسندگان

  • Thomas Deselaers
  • Tobias Gass
  • Tobias Weyand
  • Hermann Ney
چکیده

We present the methods we applied in the four different tasks of the ImageCLEF 2007 content-based image retrieval evaluation. We participated in all four tasks using a variety of methods. Global and local image descriptors are applied using nearest neighbour search for the medical and photo retrieval tasks and discriminative models for the object retrieval and the medical automatic annotation task. For the photo and medical retrieval task, we apply a maximum entropy training method to learn an optimal feature weighting from the queries and qrels from last year. This method works particularly well if the queries are very similar as they were in the medical retrieval task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FIRE in ImageCLEF 2007: Support Vector Machines and Logistic Models to Fuse Image Descriptors for Photo Retrieval

Submissions to the photographic retrieval task of the ImageCLEF 2007 evaluation and improvements of our methods that were tested and evaluated after the official benchmark. We use our image retrieval system FIRE to combine a set of different image descriptors. The most important step in combining descriptors is to find a suitable weighting. Here, we evaluate empirically tuned linear combination...

متن کامل

FIRE - Flexible Image Retrieval Engine: ImageCLEF 2004 Evaluation

We describe FIRE, a content-based image retrieval system, and the methods we used within this system in the ImageCLEF 2004 evaluation. In FIRE, various features are available to represent images. The diversity of available features allows the user to adapt the system to the task at hand. A weighted combination of features admits flexible query formulations and helps with processing specific que...

متن کامل

Using Pseudo-relevance Feedback to Improve Image Retrieval Results

In this paper, we propose a pseudo-relevance feedbackmethod to deal with the photographic retrieval and medical retrieval tasks of ImageCLEF 2007. The aim of our participation to ImageCLEF is to evaluate a combination method using both english textual queries and image queries to answer to topics. The approach processes image queries and merges them with textual queries in order to improve resu...

متن کامل

FIRE in ImageCLEF 2005: Combining Content-based Image Retrieval with Textual Information Retrieval

In this paper the methods we used in the 2005 ImageCLEF content-based image retrieval evaluation are described. For the medical retrieval task, we combined several low-level image features with textual information retrieval. Combining these two information sources, clear improvements over the use of one of these sources alone are possible. Additionally we participated in the automatic annotatio...

متن کامل

MIRACLE at ImageCLEFphoto 2007: Evaluation of Merging Strategies for Multilingual and Multimedia Information Retrieval

This paper describes the participation of MIRACLE research consortium at the ImageCLEF Photographic Retrieval task of ImageCLEF 2007. For this campaign, the main purpose of our experiments was to thoroughly study different merging strategies, i.e. methods of combination of textual and visual retrieval techniques. While we have applied all the well known techniques which we had already used in p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007