Functional assignment to JEV proteins using SVM
نویسندگان
چکیده
Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).
منابع مشابه
Predicting functional family of novel enzymes irrespective of sequence similarity: a statistical learning approach.
The function of a protein that has no sequence homolog of known function is difficult to assign on the basis of sequence similarity. The same problem may arise for homologous proteins of different functions if one is newly discovered and the other is the only known protein of similar sequence. It is desirable to explore methods that are not based on sequence similarity. One approach is to assig...
متن کاملHuman T cell responses to Japanese encephalitis virus in health and disease
Japanese encephalitis (JE) virus (JEV) is an important cause of encephalitis in children of South and Southeast Asia. However, the majority of individuals exposed to JEV only develop mild symptoms associated with long-lasting adaptive immunity. The related flavivirus dengue virus (DENV) cocirculates in many JEV-endemic areas, and clinical data suggest cross-protection between DENV and JEV. To a...
متن کاملCell-mediated immune responses in healthy children with a history of subclinical infection with Japanese encephalitis virus: analysis of CD4+ and CD8+ T cell target specificities by intracellular delivery of viral proteins using the human immunodeficiency virus Tat protein transduction domain.
Japanese encephalitis virus (JEV), a single-stranded positive-sense RNA virus of the family Flaviviridae, is the major cause of paediatric encephalitis in Asia. The high incidence of subclinical infections in Japanese encephalitis-endemic areas and subsequent evasion of encephalitis points to the development of immune responses against JEV. Humoral responses play a central role in protection ag...
متن کاملPrediction of functional class of novel viral proteins by a statistical learning method irrespective of sequence similarity.
The function of a substantial percentage of the putative protein-coding open reading frames (ORFs) in viral genomes is unknown. As their sequence is not similar to that of proteins of known function, the function of these ORFs cannot be assigned on the basis of sequence similarity. Methods complement or in combination with sequence similarity-based approaches are being explored. The web-based s...
متن کاملFUSE binding protein 1 interacts with untranslated regions of Japanese encephalitis virus RNA and negatively regulates viral replication.
The untranslated regions (UTRs) located at the 5' and 3' ends of the Japanese encephalitis virus (JEV) genome, a positive-sense RNA, are involved in viral translation, the initiation of RNA synthesis, and the packaging of nascent virions. The cellular and viral proteins that participate in these processes are expected to interact with the UTRs. In this study, we used biotinylated RNA-protein pu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformation
دوره 3 شماره
صفحات -
تاریخ انتشار 2008