Regulation of human adipogenesis by miR125b-5p
نویسندگان
چکیده
MicroRNAs (miRNAs) are non-coding RNAs that regulate target gene expression at the post-transcriptional level and are supposed to be implicated in the control of adipogenesis. We aimed to identify miRNAs which are involved in the regulation of human adipogenesis and searched for their molecular targets. Applying microarray-analysis we identified miR125b-5p as upregulated during human adipocyte differentiation, although its role during adipogenesis is unknown. We identified and characterized the matrix metalloproteinase 11 (MMP11) as a direct target of miR125b-5p by showing that miR125b-5p overexpression significantly reduces MMP11 luciferase activity and mutation of any single binding site was sufficient to abolish the miR125b-5p mediated inhibition of luciferase activity. MMP11 overexpression decreased fat accumulation, indicating that MMP11 acts as an anti-adipogenic regulator. In contrast, overexpression of miR125b-5p itself reduced adipogenesis. In summary, we identified miR125b-5p as upregulated during human adipogenesis indicating that miR125b-5p may serve as a regulator of human adipocyte differentiation. We further show that miR125b-5p downregulates the anti-adipogenic MMP11, but directly inhibits adipogenesis itself. Taken together, these data implicate that miR125b-5p can affect human adipogenesis via MMP11 and probably additional targets.
منابع مشابه
miR-204-5p promotes the adipogenic differentiation of human adipose-derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling
MicroRNAs (miRNAs or miRs) play an important regulatory role during adipogenesis, and have been studied extensively in this regard. Specifically, the switch between the differentiation of mesenchymal stem cells (MSCs) towards adipogenic vs. osteogenic lineages is regulated by miR-204 which controls the expression of Runx2. However, the association between miR-204-5p and the Wnt/β-catenin signal...
متن کاملmiR-425-5p Inhibits Differentiation and Proliferation in Porcine Intramuscular Preadipocytes
Intramuscular fat (IMF) content affects the tenderness, juiciness, and flavor of pork. An increasing number of studies are focusing on the functions of microRNAs (miRs) during porcine intramuscular preadipocyte development. Previous studies have proved that miR-425-5p was enriched in porcine skeletal muscles and played important roles in multiple physiological processes; however, its functions ...
متن کاملApoptosis induction in acute promyelocytic leukemia cells through upregulation of CEBPα by miR-182 blockage
MicroRNAs (miRNAs) involved in regulation of the genes. The CCAAT/enhancer-binding protein-α (CEBPα) is a crucial transcription factor for normal hematopoiesis and cell cycle that frequently disrupted in human acute myeloid leukemia (AML). The miR-182 up-regulation in several malignant diseases such as AML was reported, in the other hand bioinformatics analysis revealed CEBPα targeted by miR-18...
متن کاملMicroRNA-125a-5p Affects Adipocytes Proliferation, Differentiation and Fatty Acid Composition of Porcine Intramuscular Fat
Intramuscular fat (IMF) content and composition are considered crucial indicators of porcine meat quality. However, the molecular mechanism of porcine IMF development is still mostly unclear. Recently, new evidence suggested that microRNA (miRNAs) play important roles in porcine intramuscular adipogenesis. Previously, microRNA-125a-5p (miR-125a-5p) was identified as an important regulator of ad...
متن کاملMicroribonucleic acid dysregulations in children and adolescents with obsessive–compulsive disorder
AIM Obsessive-compulsive disorder (OCD) is a disorder characterized by the presence of obsessions and/or compulsions. Although disorder etiology and pathogenesis remains unknown, several theories about OCD development have been proposed, and many researchers believe that it is caused by both genetic and environmental factors. In the current study, our aim was to investigate miRNA levels in OCD....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2016