Music Genre Classification Using an Auditory Memory Model
نویسنده
چکیده
Audio feature estimation is potentially improved by including higherlevel models. One such model is the Auditory Short Term Memory (STM) model. A new paradigm of audio feature estimation is obtained by adding the influence of notes in the STM. These notes are identified when the perceptual spectral flux has a peak, and the spectral content that is increased by the new note is added to the STM. The STM is exponentially fading with time span and number of elements, and each note only belongs to the STM for a limited time. Initial experiment regarding the behavior of the STM shows promising results, and an initial experiment with sensory dissonance has been undertaken with good results. The parameters obtained form the auditory memory model, along with the dissonance measure, are shown here to be of interest in genre classification.
منابع مشابه
شناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملMusic Genre Classification Using Sparsity-Eager Support Vector Machines
Constructing robust categorical and typological classifiers, i.e., finding auditory constructs utilized for describing music categories, is an important problem in music genre classification. Supervised methods such as support vector machine (SVM) achieve state of the art performance for genre classification but suffer from over-fitting on training examples. In this paper, we introduce a superv...
متن کاملMusic Genre Classification: A Multilinear Approach
In this paper, music genre classification is addressed in a multilinear perspective. Inspired by a model of auditory cortical processing, multiscale spectro-temporal modulation features are extracted. Such spectro-temporal modulation features have been successfully used in various content-based audio classification tasks recently, but not yet in music genre classification. Each recording is rep...
متن کاملSparse Coding Based Music Genre Classification Using Spectro-Temporal Modulations
Spectro-temporal modulations (STMs) of the sound convey timbre and rhythm information so that they are intuitively useful for automatic music genre classification. The STMs are usually extracted from a time-frequency representation of the acoustic signal. In this paper, we investigate the efficacy of two kinds of STM features, the Gabor features and the rate-scale (RS) features, selectively ext...
متن کاملMusic Genre Categorization in Humans and Machines
Music Genre Classification is one of the most active tasks in Music Information Retrieval (MIR). Many successful approaches can be found in literature. Most of them are based on Machine Learning algorithms applied to different audio features automatically computed for a specific database. But there is no computational model that explains how musical features are combined in order to yield genre...
متن کامل