Unfolding preprocessing for meaningful time series clustering

نویسندگان

  • Geoffroy Simon
  • John Aldo Lee
  • Michel Verleysen
چکیده

Clustering methods are commonly applied to time series, either as a preprocessing stage for other methods or in their own right. In this paper it is explained why time series clustering may sometimes be considered as meaningless. This problematic situation is illustrated for various raw time series. The unfolding preprocessing methodology is then introduced. The usefulness of unfolding preprocessing is illustrated for various time series. The experimental results show the meaningfulness of the clustering when applied on adequately unfolded time series.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the need of unfolding preprocessing for time series clustering

Clustering methods are commonly used on time series, either as a preprocessing for other methods or for themselves. This paper illustrates the problem of clustering applied on regressor vectors obtained from row time series. It is thus shown why time series clustering may sometimes seem meaningless. A preprocessing is proposed to unfold time series and allow a meaningful clustering of regressor...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Theorectical Analysis of Subsequence Time-Series Clustering from a Frequency-Analysis Viewpoint

Although Subsequence Time Series (STS) clustering is one of the most popular pattern discovery techniques from timeseries data, a mathematical methodology for analyzing STS clustering (or pattern discovery from time-series data) has attracted little attention. In the situation, it has had a surprising report [10] that cluster centers obtained using STS clustering closely resemble ”sine waves” w...

متن کامل

Spectral Preprocessing for Clustering Time-Series Gene Expressions

Based on gene expression profiles, genes can be partitioned into clusters, which might be associated with biological processes or functions, for example, cell cycle, circadian rhythm, and so forth. This paper proposes a novel clustering preprocessing strategy which combines clustering with spectral estimation techniques so that the time information present in time series gene expressions is ful...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 19 6-7  شماره 

صفحات  -

تاریخ انتشار 2006