Evolutionary minimum verification error learning of the alternative hypothesis model for LLR-based speaker verification
نویسندگان
چکیده
It is usually difficult to characterize the alternative hypothesis precisely in a log-likelihood ratio (LLR)-based speaker verification system. In a previous work, we proposed using a weighted arithmetic combination (WAC) or a weighted geometric combination (WGC) of the likelihoods of the background models instead of heuristic combinations, such as the arithmetic mean and the geometric mean, to better characterize the alternative hypothesis. In this paper, we further propose learning the parameters associated with WAC or WGC via an evolutionary minimum verification error (MVE) training method, such that both the false acceptance probability and the false rejection probability can be minimized. Our experiment results show that the proposed methods outperform conventional LLR-based approaches.
منابع مشابه
A Novel Characterization of the Alternative Hypothesis Using Kernel Discriminant Analysis for LLR-Based Speaker Verification
In a log-likelihood ratio (LLR)-based speaker verification system, the alternative hypothesis is usually difficult to characterize a priori, since the model should cover the space of all possible impostors. In this paper, we propose a new LLR measure in an attempt to characterize the alternative hypothesis in a more effective and robust way than conventional methods. This LLR measure can be fur...
متن کاملA Novel Alternative Hypothesis Characterization Using Kernel Classifiers for LLR-Based Speaker Verification
In a log-likelihood ratio (LLR)-based speaker verification system, the alternative hypothesis is usually ill-defined and hard to characterize a priori, since it should cover the space of all possible impostors. In this paper, we propose a new LLR measure in an attempt to characterize the alternative hypothesis in a more effective and robust way than conventional methods. This LLR measure can be...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کاملBayesian Approach to Text-independent Speaker Verification
In this paper, we propose a novel approach to speaker verification. One of the problems in conventional speaker verificaion techniques based on the likelihood ratio test (LRT) is that the detection performance varies widely for each hypothesized speaker when the decision threshold is held fixed. In order to cope with the problem, we incorporate the distribution of the log likelihood ratio (LLR)...
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کامل