Oriented, 2-edge-colored, and 2-vertex-colored homomorphisms

نویسندگان

  • Pascal Ochem
  • Nazanin Movarraei
چکیده

We show that the 2-edge-colored chromatic number of a class of simple graphs is bounded if and only if the acyclic chromatic number is bounded for this class. Recently, the CSP dichotomy conjecture has been reduced to the case of 2-edge-colored homomorphism and to the case of 2-vertex-colored homomorphism. Both reductions are rather long and follow the reduction to the case of oriented homomorphism in "Graphs and homomorphisms" by Hell and Nešetřil. We give an alternate proof of the case of 2-vertex-colored homomorphism via a simple reduction from the case of 2-edge-colored homomorphism. Finally, we prove that deciding if the 2-edge-colored chromatic number of a 2-edge-colored graph is at most 4 is NP-complete, even if restricted to 2-connected subcubic bipartite planar graphs with arbitrarily large girth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homomorphisms of 2-edge-colored graphs

In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs with edges colored with two colors. We consider various graph classes (outerplanar graphs, partial 2-trees, partial 3-trees, planar graphs) and the problem is to find, for each class, the smallest number of vertices of a 2-edge-colored graph H such that each graph of the considered class admits a homomorphism to H.

متن کامل

Homomorphisms of 2-Edge-Colored Triangle-Free Planar Graphs

In this article, we introduce and study the properties of some target graphs for 2-edge-colored homomorphism. Using these properties, we obtain in particular that the 2-edge-colored chromatic number of the class of triangle-free planar graphs is at most 50. We also show that it is at least 12. C © 2016 Wiley Periodicals, Inc. J. Graph Theory 00: 1–20, 2016

متن کامل

Colored Prüfer Codes for k-Edge Colored Trees

A combinatorial bijection between k-edge colored trees and colored Prüfer codes for labelled trees is established. This bijection gives a simple combinatorial proof for the number k(n − 2)!(nk−n n−2 ) of k-edge colored trees with n vertices.

متن کامل

Colored Homomorphisms of Colored Mixed Graphs

The homomorphisms of oriented or undirected graphs, the oriented chromatic number, the relationship between acyclic coloring number and oriented chromatic number, have been recently studied. Improving and combining earlier techniques of N. Alon and T. H. Marshall (1998, J. Algebraic Combin. 8, 5 13) and A. Raspaud and E. Sopena (1994, Inform. Process. Lett. 51, 171 174) we prove here a general ...

متن کامل

Computing the partition function for graph homomorphisms

We introduce the partition function of edge-colored graph homomorphisms, of which the usual partition function of graph homomorphisms is a specialization, and present an efficient algorithm to approximate it in a certain domain. Corollaries include efficient algorithms for computing weighted sums approximating the number of k-colorings and the number of independent sets in a graph, as well as a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 123  شماره 

صفحات  -

تاریخ انتشار 2017