Crosstalk between Virulence Loci: Regulation of Salmonella enterica Pathogenicity Island 1 (SPI-1) by Products of the std Fimbrial Operon
نویسندگان
چکیده
Invasion of intestinal epithelial cells is a critical step in Salmonella infection and requires the expression of genes located in Salmonella pathogenicity island 1 (SPI-1). A key factor for SPI-1 expression is DNA adenine (Dam) methylation, which activates synthesis of the SPI-1 transcriptional activator HilD. Dam-dependent regulation of hilD is postranscriptional (and therefore indirect), indicating the involvement of unknown cell functions under Dam methylation control. A genetic screen has identified the std fimbrial operon as the missing link between Dam methylation and SPI-1. We show that all genes in the std operon are part of a single transcriptional unit, and describe three previously uncharacterized ORFs (renamed stdD, stdE, and stdF). We present evidence that two such loci (stdE and stdF) are involved in Dam-dependent control of Salmonella SPI-1: in a Dam(-) background, deletion of stdE or stdF suppresses SPI-1 repression; in a Dam(+) background, constitutive expression of StdE and/or StdF represses SPI-1. Repression of SPI-1 by products of std operon explains the invasion defect of Salmonella Dam(-) mutants, which constitutively express the std operon. Dam-dependent repression of std in the ileum may be required to permit invasion, as indicated by two observations: constitutive expression of StdE and StdF reduces invasion of epithelial cells in vitro (1,000 fold) and attenuates Salmonella virulence in the mouse model (>60 fold). In turn, crosstalk between std and SPI-1 may play a role in intestinal infections by preventing expression of SPI-1 in the caecum, an intestinal compartment in which the std operon is known to be expressed.
منابع مشابه
The SPI-3 pathogenicity island of Salmonella enterica.
Pathogenicity islands are chromosomal clusters of pathogen-specific virulence genes often found at tRNA loci. We have determined the molecular genetic structure of SPI-3, a 17-kb pathogenicity island located at the selC tRNA locus of Salmonella enterica serovar Typhimurium. The G+C content of SPI-3 (47.5%) differs from that of the Salmonella genome (52%), consistent with the notion that these s...
متن کاملIn vivo genetic analysis indicates that PhoP-PhoQ and the Salmonella pathogenicity island 2 type III secretion system contribute independently to Salmonella enterica serovar Typhimurium virulence.
Many virulence factors are required for Salmonella enterica serovar Typhimurium to replicate intracellularly and proliferate systemically within mice. In this work, we have carried out genetic analyses in vivo to determine the functional relationship between two major virulence factors necessary for systemic infection by S. enterica serovar Typhimurium: the Salmonella pathogenicity island 2 (SP...
متن کاملGenome-Wide Analysis of the Salmonella Fis Regulon and Its Regulatory Mechanism on Pathogenicity Islands
Fis, one of the most important nucleoid-associated proteins, functions as a global regulator of transcription in bacteria that has been comprehensively studied in Escherichia coli K12. Fis also influences the virulence of Salmonella enterica and pathogenic E. coli by regulating their virulence genes, however, the relevant mechanism is unclear. In this report, using combined RNA-seq and chromati...
متن کاملThe RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes.
The Rcs phosphorelay is a multicomponent signaling system that positively regulates colanic acid synthesis and negatively regulates motility and virulence. We have exploited a spontaneously isolated mutant, IgaA(T191P), that is nearly maximally activated for the Rcs system to identify a vast set of genes that respond to the stimulation, and we report new regulatory properties of this signaling ...
متن کاملCoordinate regulation of Salmonella pathogenicity island 1 (SPI1) and SPI4 in Salmonella enterica serovar Typhimurium.
Salmonella enterica serovar Typhimurium harbors five pathogenicity islands (SPI) required for infection in vertebrate hosts. Although the role of SPI1 in promoting epithelial invasion and proinflammatory cell death has been amply documented, SPI4 has only more recently been implicated in Salmonella virulence. SPI4 is a 24-kb pathogenicity island containing six open reading frames, siiA to siiF....
متن کامل