Wrapper design for the reuse of a bus, network-on-chip, or other functional interconnect as test access mechanism
نویسندگان
چکیده
A new core test wrapper design approach is proposed which transports streaming test data, for example scan test patterns, into and out of an embedded core exclusively via (some of) its functional data ports. The latter are typically based on standardised protocols such as AXI, DTL, and OCP. The new wrapper design allows a functional interconnect, such as an on-chip bus or network-on-chip (NOC) to transport test data to embedded cores, and hence eliminates the need for a conventional dedicated test access mechanism (TAM), such as a TestRail or test bus. The approach leaves both the tester, as well as the embedded core and its test unchanged, while the functional interconnect can handle the test data transport as a regular data application. The functional interconnect is required to offer guaranteed throughput and zero latency variation, a service that is available in many buses and networks. For 672 example cases based on the ITC'02 System-on-Chip (SOC) Test Benchmarks, the new approach in comparison with the conventional approach shows an average wrapper area increase of 14.5%, which is negligible at the SOC level, especially since the dedicated TAM can be eliminated. Futhermore, the new approach decreases the core test length by 3.8% on average.
منابع مشابه
CDMA Based Interconnect Mechanism for SOPC
The Network-on-chip (NoC) designs consisting of large pack of Intellectual Property (IP) blocks (cores) on the same silicon die is becoming technically possible nowadays. But, the communication between the IP Cores is the main issue in recent years. This paper presents the design of a Code Division Multiple Access (CDMA) based wrapper interconnect as a component of System on programmable chip (...
متن کاملBandwidth Analysis of Functional Interconnects Used as Test Access Mechanism
Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or Network on Chip (NOC), can be reused as TAM; this will reduce the overall design effort and associated...
متن کاملOptimisation and Control of IEEE 1500 Wrappers and User Defined TAMs
With the adoption of the IEEE 1500 [1] Standard, the opportunity exists for System on Chip (SoC) designers to specify test systems in a generic way. As the IEEE 1500 Standard does not address the specification and design of the on-chip Test Access Mechanism (TAM), considerable effort may still be required if test engineers are to optimise testing SoCs with IEEE 1500 Wrapped Cores. This paper de...
متن کاملOptimisation of IEEE 1500 Wrappers and User Defined TAMs
With the adoption of the IEEE 1500 [1] Standard, the opportunity exists for System on Chip (SoC) designers to specify test systems in a generic way. As the IEEE 1500 Standard does not address the specification and design of the on-chip Test Access Mechanism (TAM), considerable effort may still be required if test engineers are to optimise testing SoCs with IEEE 1500 Wrapped Cores. This paper de...
متن کاملCDMA bus-based on-chip interconnect infrastructure
As technology scales toward deep submicron, the integration of complete system-on-chip (SoC) designs consisting of large number of Intellectual Property (IP) blocks (cores) on the same silicon die is becoming technically feasible. Until recently, the design-space exploration for SoCs has been mainly focused on the computational aspects of the problem. However, as the number of IP blocks on a si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET Computers & Digital Techniques
دوره 1 شماره
صفحات -
تاریخ انتشار 2007