Fast Gaussian Elimination with Partial Pivoting for Matrices with Displacement Structure

نویسندگان

  • I. GOHBERG
  • T. KAILATH
  • V. OLSHEVSKY
چکیده

Fast 0(n2) implementation of Gaussian elimination with partial pivoting is designed for matrices possessing Cauchy-like displacement structure. We show how Toeplitz-like, Toeplitz-plus-Hankel-like and Vandermondelike matrices can be transformed into Cauchy-like matrices by using Discrete Fourier, Cosine or Sine Transform matrices. In particular this allows us to propose a new fast 0{n2) Toeplitz solver GKO, which incorporates partial pivoting. A large set of numerical examples showed that GKO demonstrated stable numerical behavior and can be recommended for solving linear systems, especially with nonsymmetric, indefinite and ill-conditioned positive definite Toeplitz matrices. It is also useful for block Toeplitz and mosaic Toeplitz ( Toeplitz-block ) matrices. The algorithms proposed in this paper suggest an attractive alternative to look-ahead approaches, where one has to jump over ill-conditioned leading submatrices, which in the worst case requires 0(n3) operations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error analysis of a fast partial pivoting method for structured matrices

Many matrices that arise in the solution of signal processing problems have a special displacement structure. For example, adaptive filtering and direction-of-arrival estimation yield matrices of a Toeplitz type. A recent method of Gohberg, Kailath and Olshevsky (GKO) allows fast Gaussian elimination with partial pivoting for such structured matrices. In this paper, a rounding error analysis is...

متن کامل

Bunch-Kaufman Pivoting for Partially Reconstructible Cauchy-like Matrices, with Applications to Toeplitz-like Linear Equations and to Boundary Rational Matrix Interpolation Problems

In an earlier paper [GKO95] we exploited the displacement structure of Cauchy-like matrices to derive for them a fast O(n) implementation of Gaussian elimination with partial pivoting. One application is to the rapid and numerically accurate solution of linear systems with Toeplitzlike coe cient matrices, based on the fact that the latter can be transformed into Cauchy-like matrices by using th...

متن کامل

Error analysis of a partial pivoting method for structured matrices

Many matrices that arise in the solution of signal processing problems have a special displacement structure. For example, adaptive filtering and direction-of-arrival estimation yield matrices of Toeplitz type. A recent method of Gohberg, Kailath and Olshevsky (GKO) allows fast Gaussian elimination with partial pivoting for such structured matrices. In this paper, a rounding error analysis is p...

متن کامل

Stable Pivoting for the Fast Factorization of Cauchy-Like Matrices

Recent work by Sweet and Brent on the fast factorization of Cauchy-like matrices through a fast version of Gaussian elimination with partial pivoting has uncovered a potential stability problem which is not present in ordinary Gaussian elimination: excessive growth in the generators used to represent the matrix and its Schur complements can lead to large errors. A natural way to x this problem ...

متن کامل

Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping Abstract Parallel Sparse Gaussian Elimination with Partial Pivoting and 2-d Data Mapping

Sparse Gaussian elimination with partial pivoting is a fundamental algorithm for many scientiic and engineering applications, but it is still an open problem to develop a time and space eecient algorithm on distributed memory machines. In this thesis, we present an asynchronous algorithm which incorporates static symbolic factorization, nonsymmetric L/U supernode partitioning and supern-ode ama...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010