Design and analysis of maximum Hopfield networks
نویسندگان
چکیده
Since McCulloch and Pitts presented a simplified neuron model (1943), several neuron models have been proposed. Among them, the binary maximum neuron model was introduced by Takefuji et al. and successfully applied to some combinatorial optimization problems. Takefuji et al. also presented a proof for the local minimum convergence of the maximum neural network. In this paper we discuss this convergence analysis and show that this model does not guarantee the descent of a large class of energy functions. We also propose a new maximum neuron model, the optimal competitive Hopfield model (OCHOM), that always guarantees and maximizes the decrease of any Lyapunov energy function. Funabiki et al. (1997, 1998) applied the maximum neural network for the n-queens problem and showed that this model presented the best overall performance among the existing neural networks for this problem. Lee et al. (1992) applied the maximum neural network for the bipartite subgraph problem showing that the solution quality was superior to that of the best existing algorithm. However, simulation results in the n-queens problem and in the bipartite subgraph problem show that the OCHOM is much superior to the maximum neural network in terms of the solution quality and the computation time.
منابع مشابه
Estimation of Network Reliability for a Fully Connected Network with Unreliable Nodes and Unreliable Edges using Neuro Optimization
In this paper it is tried to estimate the reliability of a fully connected network of some unreliable nodes and unreliable connections (edges) between them. The proliferation of electronic messaging has been witnessed during the last few years. The acute problem of node failure and connection failure is frequently encountered in communication through various types of networks. We know that a ne...
متن کاملHopfield Neural Network with Hysteresis for Maximum Cut Problem
A model of neurons with hysteresis (or hysteresis binary neurons) for the Hopfield neural networks is studied. We prove theoretically that the emergent collective properties of the original Hopfield neural networks also are present in the Hopfield neural networks with hysteresis binary neurons. As an example, the networks are also applied to the maximum cut problem and results of computer simul...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملSolving maximum independent set by asynchronous distributed hopfield-type neural networks
We propose a heuristic for solving the maximum independent set problem for a set of processors in a network with arbitrary topology. We assume an asynchronous model of computation and we use modified Hopfield neural networks to find high quality solutions. We analyze the algorithm in terms of the number of rounds necessary to find admissible solutions both in the worst case (theoretical analysi...
متن کاملScaling laws for the attractors of Hopfield networks
(Reçu le 28 mars 1985, accepte sous forme définitive le 29 mai 1985) Résumé. 2014 Les réseaux d'automates à seuil sont des systèmes dynamiques à structure aléatoire semblables aux verres de spins dont J. Hopfield a proposé l'application comme mémoires associa-tives. Nous établissons les lois d'échelles reliant le nombre maximum d'attracteurs utiles et la distance d'attraction, au nombre des aut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE transactions on neural networks
دوره 12 2 شماره
صفحات -
تاریخ انتشار 2001