Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.
نویسندگان
چکیده
Transition metal fluorides (such as FeF3 or CoF2) promise significantly higher theoretical capacities (>571 mAh g(-1)) than the cathode materials currently used in Li-ion batteries. However, their practical application faces major challenges that include poor electrochemical reversibility induced by the repeated bond-breaking and formation and the accompanied volume changes and the difficulty of building an internal Li source within the material so that a full Li-ion cell could be assembled at a discharged state without inducing further technical risk and cost issues. In this work, we effectively addressed these challenges by designing and synthesizing, via an aerosol-spray pyrolysis technique, a pomegranate-structured nanocomposite FeM/LiF/C (M = Co, Ni), in which 2-3 nm carbon-coated FeM nanoparticles (∼10 nm in diameter) and LiF nanoparticles (∼20 nm) are uniformly embedded in a porous carbon sphere matrix (100-1000 nm). This uniquely architectured nanocomposite was made possible by the extremely short pyrolysis time (∼1 s) and carbon coating in a high-temperature furnace, which prevented the overgrowth of FeM and LiF in the primordial droplet that serves as the carbon source. The presence of Ni or Co in FeM/LiF/C effectively suppresses the formation of Fe3C and further reduces the metallic particle size. The pomegranate architecture ensures the intimate contact among FeM, LiF, and C, thus significantly enhancing the conversion-reaction kinetics, while the nanopores inside the pomegranate-like carbon matrix, left by solvent evaporation during the pyrolysis, effectively accommodate the volume change of FeM/LiF during charge/discharge. Thus, the FeM/LiF/C nanocomposite shows a high specific capacity of >300 mAh g(-1) for more than 100 charge/discharge cycles, which is one of the best performances among all of the prelithiated metal fluoride cathodes ever reported. The pomegranate-structured FeM/LiF/C with its built-in Li source provides an inspiration to the practical application of conversion-reaction-type chemistries as next-generation cathode materials for high-energy density Li-ion batteries.
منابع مشابه
Theoretical Assessment of the First Cycle Transition, Structural Stability and Electrochemical Properties of Li2FeSiO4 as a Cathode Material for Li-ion Battery
Lithium iron orthosilicate (Li2FeSiO4) with Pmn21 space group is theoritically investigated as a chathode material of Li-ion batteries using density functional theory (DFT) calculations. PBE-GGA (+USIC), WC-GGA, L(S)DA (+USIC) and mBJ+LDA(GGA) methods under spin-polarization ferromagnetic (FM) and anti-ferromagnetic (AFM) procedure are used to investigate the material properties, includin...
متن کاملIn situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries
Pre-lithiated FeF3/C cathode with built-in Li source is in situ fabricated. Uniformly distributed Fe and LiF with size ~6 nm in carbon matrix are
متن کاملVoltage increase of aqueous lithium-ion batteries by Li-ion conducting Li1.5Al0.5Ge1.5(PO4)3 glass-ceramic
In this research, a lithium ion conducting lithium aluminum germanium phosphate (LAGP) glass-ceramic with a formula of Li1.5Al0.5Ge1.5(PO4)3 was synthesized by melt-quenching method and subsequent crystallization at 850 °C for 8 h. The prepared glass-ceramic was characterized using X-ray diffraction analysis (XRD) and field emission scanning electron microscopy (FESEM). The XRD patterns exhib...
متن کاملSnO2 Nanowires on Carbon Nanotube Film as a High Performance Anode Material for Flexible Li-ion Batteries
Today, Li-ion batteries (LIBs) are the most common rechargeable batteries used in electronic devices. SnO2 with theoretical specific capacity of 782 mAh/g is among the best anode materials for LIBs. In this report, Three-dimensional SnO2 nanowires (NWs) on carbon nanotube (CNT) thin film (SnO2 / CNT) is fabricated using a combination of vacuum filtration and thermal evaporation techniques. The ...
متن کاملElectrode Materials for Lithium Ion Batteries: A Review
Electrochemical energy storage systems are categorized into different types, according to their mechanisms, including capacitors, supercapacitors, batteries and fuel cells. All battery systems include some main components: anode, cathode, an aqueous/non-aqueous electrolyte and a membrane that separates anode and cathode while being permeable to ions. Being one of the key parts of any new electr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 10 5 شماره
صفحات -
تاریخ انتشار 2016