Moduli Space of Principal Sheaves over Projective Varieties

نویسنده

  • I. SOLS
چکیده

Let G be a connected reductive group. The late Ramanathan gave a notion of (semi)stable principal G-bundle on a Riemann surface and constructed a projective moduli space of such objects. We generalize Ramanathan’s notion and construction to higher dimension, allowing also objects which we call semistable principal G-sheaves, in order to obtain a projective moduli space: a principal G-sheaf on a projective variety X is a triple (P,E, ψ), where E is a torsion free sheaf on X, P is a principal G-bundle on the open set U where E is locally free and ψ is an isomorphism between E|U and the vector bundle associated to P by the adjoint representation. We say it is (semi)stable if all filtrations E• of E as sheaf of (Killing) orthogonal algebras, i.e. filtrations with E i = E−i−1 and [Ei, Ej ] ⊂ E ∨∨ i+j , have ∑ (PEi rkE − PE rkEi) ( ) 0, where PEi is the Hilbert polynomial of Ei. After fixing the Chern classes of E and of the line bundles associated to the principal bundle P and characters of G, we obtain a projective moduli space of semistable principal G-sheaves. We prove that, in case dimX = 1, our notion of (semi)stability is equivalent to Ramanathan’s notion. To A. Ramanathan, in memoriam

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Bundles on Projective Varieties and the Donaldson-uhlenbeck Compactification

Let H be a semisimple algebraic group. We prove the semistable reduction theorem for μ–semistable principal H–bundles over a smooth projective variety X defined over the field C. When X is a smooth projective surface and H is simple, we construct the algebro– geometric Donaldson–Uhlenbeck compactification of the moduli space of μ–semistable principal H–bundles with fixed characteristic classes ...

متن کامل

1 Projective moduli space of semistable principal sheaves for a reductive group 1

This contribution to the homage to Silvio Greco is mainly an announcement of results to appear somewhere in full extent, explaining their development from our previous article [G-S1] on conic bundles. In [N-S] and [S1] Narasimhan and Seshadri defined stable bundles on a curve and provided by the techniques of Geometric Invariant Theory (GIT) developed by Mumford [Mu] a projective moduli space o...

متن کامل

Stable Tensor Fields and Moduli Space of Principal G-sheaves for Classical Groups

Let X be a smooth projective variety over C. Let G be the group O(r,C), or Sp(r,C). We find the natural notion of semistable principal G-bundle and construct the moduli space, which we compactify by considering also principal G-sheaves, i.e., pairs (E,φ), where E is a torsion free sheaf on X and φ is a symmetric (if G is orthogonal) or antisymmetric (if G is symplectic) bilinear form on E. If G...

متن کامل

Stable Tensor Fields and Moduli Space of Principal G-sheaves for Classical Groups

Let X be a smooth projective variety over C. Let G be the group O(r,C), or Sp(r,C). We find the natural notion of semistable principal G-bundle and construct the moduli space, which we compactify by considering also principal G-sheaves, i.e., pairs (E,φ), where E is a torsion free sheaf on X and φ is a symmetric (if G is orthogonal) or antisymmetric (if G is symplectic) bilinear form on E. If G...

متن کامل

Moduli Spaces of Twisted Sheaves on a Projective Variety

Let X be a smooth projective variety over C. Let α := {αijk ∈ H(Ui ∩ Uj ∩ Uk,O X)} be a 2-cocycle representing a torsion class [α] ∈ H2(X,O X). An α-twisted sheaf E := {(Ei, φij)} is a collection of sheaves Ei on Ui and isomorphisms φij : Ei|Ui∩Uj → Ej|Ui∩Uj such that φii = idEi , φji = φ ij and φki ◦ φjk ◦ φij = αijk idEi . We assume that there is a locally free α-twisted sheaf, that is, α giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008