Involutions of reductive Lie algebras in positive characteristic

نویسنده

  • Paul Levy
چکیده

Let G be a reductive group over a field k of characteristic 6= 2, let g = Lie(G), let θ be an involutive automorphism of G and let g = k⊕p be the associated symmetric space decomposition. For the case of a ground field of characteristic zero, the action of the isotropy group G on p is well understood, since the well-known paper of Kostant and Rallis [17]. Such a theory in positive characteristic has proved more difficult to develop. Here we use an approach based on some tools from geometric invariant theory to establish corresponding results in (good) positive characteristic. Among other results, we prove that the variety N of nilpotent elements of p has a dense open orbit, and that the same is true for every fibre of the quotient map p → p//G. However, we show that the corresponding statement for G, conjectured by Richardson, is not true. We provide a new, (mostly) calculation-free proof of the number of irreducible components of N , extending a result of Sekiguchi for k = C. Finally, we apply a theorem of Skryabin to describe the infinitesimal invariants k[p].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involutions of reductive Lie algebras

Let G be a reductive group over a field of characteristic 6= 2, let g = Lie(G), let θ be an involutive automorphism of G and let g = k⊕p be the associated symmetric space decomposition. For k = C, Kostant and Rallis studied [17] properties of orbits, centralizers, and invariants related to the (−1) eigenspace p. In this paper, we generalise [17] to the case of good positive characteristic. Amon...

متن کامل

Algebraic Groups with a Commuting Pair of Involutions and Semisimple Symmetric Spaces

Let G be a connected reductive algebraic group defined over an algebraically closed field F of characteristic not 2. Denote the Lie algebra of G by 9. In this paper we shall classify the isomorphism classes of ordered pairs of commuting involutorial automorphisms of G. This is shown to be independent of the characteristic of F and can be applied to describe all semisimple locally symmetric spac...

متن کامل

Vinberg’s θ-groups in positive characteristic and Kostant-Weierstrass slices

We generalize the basic results of Vinberg’s θ-groups, or periodically graded reductive Lie algebras, to fields of good positive characteristic. To this end we clarify the relationship between the little Weyl group and the (standard) Weyl group. We deduce that the ring of invariants associated to the grading is a polynomial ring. This approach allows us to prove the existence of a KW-section fo...

متن کامل

2 Generalized Reductive Lie

We investigate a class of Lie algebras which we call generalized reductive Lie algebras. These are generalizations of semi-simple, reductive, and affine Kac-Moody Lie algebras. A generalized reductive Lie algebra which has an irreducible root system is said to be irreducible and we note that this class of algebras have been under intensive investigation in recent years. They have also been call...

متن کامل

Non-degenerate graded Lie algebras with a degenerate transitive subalgebra

The property of degeneration of modular graded Lie algebras, first investigated by B. Weisfeiler, is analyzed. Transitive irreducible graded Lie algebras L = ∑ i∈Z Li, over algebraically closed fields of characteristic p > 2, with classical reductive component L0 are considered. We show that if a non-degenerate Lie algebra L contains a transitive degenerate subalgebra L′ such that dimL1 > 1, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008