Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices
نویسندگان
چکیده
Preparation of dense alumina (Al₂O₃) thin film through atomic layer deposition (ALD) provides a pathway to achieve the encapsulation of organic light emitting devices (OLED). Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10-4 g/(m²·day) under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.
منابع مشابه
Electrical properties of Al 2 O 3 films for TFEL - devices made with Sol - Gel technology
Thin films of Al2O3 have been deposited on ITO-coated glass substrates by a sol-gel dipcoat process. Aluminium isopropoxide (Al(OC3H7)3) was used as the Al source material. X-ray diffraction measurements show that these films are amorphous. Scanning electron microscopy and atomic force microscopy images of the films have revealed a relatively flat surface with no cracks. The dielectric properti...
متن کاملOzone-Based Atomic Layer Deposition of Crystalline V2O5 Films for High Performance Electrochemical Energy Storage
A new atomic layer deposition (ALD) process for V2O5 using ozone (O3) as oxidant has been developed that resulted in crystalline V2O5 thin films which are single-phase and orthorhombic on various substrates (silicon, Au-coated stainless steel, and anodic aluminum oxide (AAO)) without any thermal post-treatment. Within a fairly narrow temperature window (170−185 °C), this low temperature process...
متن کاملAtomic Layer Deposition of Praseodymium Aluminum Oxide for Electrical Applications
Praseodymium aluminum oxide (PAO) thin films were grown by atomic layer deposition (ALD) from a new precursor, tris(N,N′-diisopropylacetamidinato) praseodymium, (Pr(amd)3), trimethylaluminum (TMA), and water. Smooth, amorphous films having varying compositions of the general formula PrxAl2–xO3 were deposited on HF-last silicon and analyzed for physical and electrical characteristics. The films ...
متن کاملPreparation and Characterization of Aluminum Nitride Thin Films with the Potential Application in Electro-Acoustic Devices
In this work, aluminum nitride (AlN) thin films with different thicknesses were deposited on quartz and silicon substrates using single ion beam sputtering technique. The physical and chemical properties of prepared films were investigated by different characterization technique. X-ray diffraction (XRD) spectra revealed that all of the deposited films have an amorphous str...
متن کاملImproving Gas Sensing Properties of Tin Oxide Nanowires Palladium-Coated Using a Low Cost Technique
Thin films of SnO2 nanowires were successfully prepared by using chemical vapor deposition (CVD) process on quartz substrates. Afterwards, a thin layer of palladium (Pd) as a catalyst was coated on top of nanowires. For the deposition of Pd, a simple and low cost technique of spray pyrolysis was employed, which caused an intensive enhancement on the sensing response of fabricated sensors...
متن کامل