Stress-Breakdown Time and Slip-Weakening Distance Inferred from Slip-Velocity Functions on Earthquake Faults
نویسندگان
چکیده
We estimate the critical slip-weakening distance on earthquake faults by using a new approach, which is independent of the estimate of fracture energy or radiated seismic energy. The approach is to find a physically based relation between the breakdown time of shear stress Tb, the time of peak slip-velocity Tpv, and the slip-weakening distance Dc, from the time histories of shear stress, slip, and slip velocity at each point on the fault, which can be obtained from dynamic rupture calculations using a simple slip-weakening friction law. Numerical calculations are carried out for a dynamic shear crack propagating either spontaneously or at a fixed rupture velocity on a vertical fault located in a 3D half-space and a more realistic horizontally layered structure, with finite-difference schemes. The results show that Tpv is well correlated with Tb for faults even with a heterogeneous stress-drop distribution, except at locations near strong barriers and the fault edges. We also investigate this relation for different types of slip-weakening behavior. We have applied the method to two recent, strike-slip earthquakes in western Japan, the 2000 Tottori and the 1995 Kobe events. We integrated the slip-velocity functions on the vertical fault obtained from kinematic waveform inversion of strongmotion and teleseismic records from the arrival time of rupture Tr to the time of the peak-slip velocity Tpv, and we then corrected the slip obtained at Tpv for the errors expected from the dynamic calculations. It was found that the slip-weakening distance Dc estimated in the frequency window between 0.05 and 0.5 Hz ranges between 40 and 90 cm on the two earthquake faults. However, if we consider the limited frequency resolution of the observed waveforms, probable time errors in the slipvelocity functions obtained from kinematic inversion, and the uncertainty of the slipweakening behavior, the above estimates may be those located between the minimum resolvable limit and the upper bound of their real values. The estimated Dc values do not necessarily seem to indicate larger values in the shallower part and smaller values in the deeper part of the fault, but rather a spatially heterogeneous distribution that appears to be dependent on the local maximum slip. This possible dependence might be interpreted by the frictional properties of the fault such as the degree of roughness or the thickness of gouge layers, in addition to stress heterogeneities.
منابع مشابه
Slip - weakening models of the 2011 Tohoku - Oki earthquake and constraints on stress drop and fracture energy
We present 2D dynamic rupture models of the 2011 Tohoku-Oki earthquake based on linear slip-weakening friction. We use different types of available observations to constrain our model parameters. The distribution of stress drop is determined by the final slip distribution from slip inversions. As three groups of along-dip slip distribution are suggested by different slip inversions, we present ...
متن کاملFrictional melting of gabbro under extreme experimental conditions of normal stress, acceleration and sliding velocity
Understanding the physics of earthquake slip helps to improve seismic hazard predictions. The occurrence of quenched frictional melts along exhumed fault zones (pseudotachylytes) provides unequivocal evidence of ancient seismic slip along these faults [Sibson, 1975]. In order to better understand the evolution of friction (the ratio of shear stress over normal stress) during meltgenerating slip...
متن کاملFrictional weakening and slip complexity in earthquake faults
Previous work has shown that velocity-weakening friction produces slip complexity in simple dynamical models of earthquake faults ( Carlson and Langer, 1989). Rere I show that a different type of dynamical instability, caused by slipweakening friction, also produces slip complexity. The deterministically chaotic slip complexity produced by slip-weakening friction in a simple one dimensional mod...
متن کاملDoes Shear Heating of Pore Fluid Contribute to Earthquake Nucleation?
[1] Earthquake nucleation requires reduction of frictional strength = ( p) with slip or slip rate, where , n, and p are the friction coefficient, normal stress, and fluid pressure, respectively. For rate state at fixed ( p), instabilities can occur when d ss/dv < 0, where ss is the steady state friction and v is slip rate. Shear heating increases p and, if dilatancy and pore pressure diffusion ...
متن کاملSlip weakening in rocks and analog materials at co-seismic slip rates
Determination of co-seismic slip resistance in earth faults is critical for understanding the magnitude of shear-stress reduction and hence the near-fault acceleration that can occur during earthquakes. Also, knowledge of shear resistance dependency on slip velocity, slip distance, normal stress, and surface roughness is fundamental information for understanding earthquake physics and the energ...
متن کامل