Definitions , Axioms , Postulates , Propositions , and Theorems from Euclidean and Non - Euclidean Geometries by Marvin Jay

نویسنده

  • Marvin Jay Greenberg
چکیده

Logic Rule 0 No unstated assumptions may be used in a proof. Logic Rule 1 Allowable justifications. 1. “By hypothesis . . . ”. 2. “By axiom . . . ”. 3. “By theorem . . . ” (previously proved). 4. “By definition . . . ”. 5. “By step . . . ” (a previous step in the argument). 6. “By rule . . . ” of logic. Logic Rule 2 Proof by contradiction (RAA argument). Logic Rule 3 The tautology ∼ (∼ S)⇐⇒ S Logic Rule 4 The tautology ∼ (H =⇒ C)⇐⇒ H ∧ (∼ C). Logic Rule 5 The tautology ∼ (S1 ∧ S2)⇐⇒ (∼ S1∨ ∼ S2). Logic Rule 6 The statement ∼ (∀xS(x)) means the same as ∃x(∼ S(x)). Logic Rule 7 The statement ∼ (∃xS(x)) means the same as ∀x(∼ S(x)). Logic Rule 8 The tautology ((P =⇒ Q) ∧ P ) =⇒ Q. Logic Rule 9 The tautologies 1. ((P =⇒ Q) ∧ (Q =⇒ R) =⇒ (P =⇒ R). 2. (P ∧Q) =⇒ P and (P ∧Q) =⇒ Q. 3. (∼ Q =⇒∼ P ) =⇒ ((P =⇒ Q). Logic Rule 10 The tautology P =⇒ (P∨ ∼ P ). Logic Rule 11 (Proof by Cases) If C can be deduced from each of S1, S2, · · · , Sn individually, then (S1∨S2∨· · ·Sn) =⇒ C is a tautology. Logic Rule 12 Euclid’s “Common Notions” 1. ∀X (X = X) 2. ∀X ∀Y (X = Y ⇐⇒ Y = X) 3. ∀X ∀Y ∀X ((X = Y ∧ Y = Z) =⇒ X = Z) 4. If X = Y and S(X) is a statement about X, then S(X)⇐⇒ S(Y ) Undefined Terms: Point, Line, Incident, Between, Congruent. Basic Definitions 1. Three or more points are collinear if there exists a line incident with all of them. 2. Three or more lines are concurrent if there is a point incident with all of the them. 3. Two lines are parallel if they are distinct and no point is incident with both of them. 4. {←→ AB} is the set of points incident with ←→ AB. Incidence Axioms: IA1: For every two distinct points there exists a unique line incident on them. IA2: For every line there exist at least two points incident on it. IA3: There exist three distinct points such that no line is incident on all three.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definitions , Axioms , Postulates , Propositions , and Theorems from Euclidean and Non - Euclidean Geometries

Logic Rule 0 No unstated assumptions may be used in a proof. Logic Rule 1 Allowable justifications. 1. “By hypothesis . . . ”. 2. “By axiom . . . ”. 3. “By theorem . . . ” (previously proved). 4. “By definition . . . ”. 5. “By step . . . ” (a previous step in the argument). 6. “By rule . . . ” of logic. Logic Rule 2 Proof by contradiction (RAA argument). Logic Rule 3 The tautology ∼ (∼ S)⇐⇒ S L...

متن کامل

Spatial Analysis in curved spaces with Non-Euclidean Geometry

The ultimate goal of spatial information, both as part of technology and as science, is to answer questions and issues related to space, place, and location. Therefore, geometry is widely used for description, storage, and analysis. Undoubtedly, one of the most essential features of spatial information is geometric features, and one of the most obvious types of analysis is the geometric type an...

متن کامل

Engineering a Visual Field

Of the branches of mathematics, geometry has, from the earliest Hellenic period, been given a curiOZlS position that straddles empirical and exact scien;e. Its standing Os an empirical and approximate science stems from the practical ]1U1'SJlits of artistic drafting. land surveying and measuring in general. From the prominence of vi.sua/ applicatiom, such as figures and constructions in the twe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005