Analysis of INS Derived Doppler Effects on Carrier Tracking Loop

نویسندگان

  • Ravindra Babu
  • Jinling Wang
چکیده

Tracking dynamics on the GPS signal is still a big challenge to the receiver designer as the operating conditions are becoming more volatile. Optimizing the stand-alone system for dynamics, generally, degrades the accuracy of measurements. Therefore, an INS is integrated with GPS to address this issue. Doppler derived from INS can be used to aid the carrier tracking loop for improving the performance under dynamic conditions. However, the derived doppler does not truly reflect the GPS signal doppler due to errors in inertial sensors. As the tracking loop bandwidth is reduced significantly in Ultra-tightly integrated systems, any offsets in the aiding doppler creates undesired correlations in the tracking loop resulting in sub-optimal performance of the loop. The paper addresses this issue and also provides a mitigating mechanism to reduce the effects of incorrect estimates of the doppler. It is shown that doppler offsets resulting in a bias in the tracking loop can be appropriately modeled and removed. Mathematical algorithms pertaining to this are provided and the results are summarized. Simulations show that the bias due to aiding doppler offsets could be effectively addressed by appropriate modelling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitigating the Correlations in INS-aided GPS Tracking Loop Measurements: A Kalman Filter Based Approach

The fusion of GPS and INS is undertaken at different levels to leverage the benefits of both technologies, and to provide a robust solution. Loose and Tight Coupling schemes have been in existence for more than a decade. Though these two configurations were used in many applications, the goal is always to improve the robustness of the navigation solution. With this objective, and the rapid deve...

متن کامل

Nonlinear Stochastic Modeling for INS Derived Doppler Estimates in Ultra-Tight GPS/PL/INS Integration

GPS, Pseudolites (PL) and Inertial Navigation Systems (INS) exhibit complementary performance characteristics, advantage of which can be taken through integration. System integration can be made at different levels, namely loose coupling, tight coupling and ultra-tight coupling, depending on the desired robustness (vs complexity) of the of the overall system design. In ultra-tight integration, ...

متن کامل

Ultra-tight GPS/INS/PL Integration: A System Concept and Performance Analysis

The architecture of the ultra-tight GPS/INS/PL integration is the key to its successful performance; the crux of this architecture is the Doppler feedback to the GPS receiver tracking loops. This Doppler derived from INS, when integrated with the carrier tracking loops, removes the Doppler due to vehicle dynamics from the GPS/PL signal thereby warranting a significant reduction in the carrier t...

متن کامل

Performance of code tracking loops in ultra- tight GPS/INS/PL integration

With its several inherent advantages, an ultra-tightly coupled GPS/INS/PL system will have a dramatic increase in both commercial and defence applications. Integrating the correlator measurements, I (in-phase) and Q (quadrature), with position, velocity and attitude from INS in a Kalman filter characterises this type of system. The Doppler feedback derived from the corrected INS is then fed bac...

متن کامل

Tracking Architecture Based on Dual-Filter with State Feedback and Its Application in Ultra-Tight GPS/INS Integration

If a Kalman Filter (KF) is applied to Global Positioning System (GPS) baseband signal preprocessing, the estimates of signal phase and frequency can have low variance, even in highly dynamic situations. This paper presents a novel preprocessing scheme based on a dual-filter structure. Compared with the traditional model utilizing a single KF, this structure avoids carrier tracking being subject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004