Decoy receptor-2 small interfering RNA (siRNA) strategy employing three different siRNA constructs in combination defeats adenovirus-transferred tumor necrosis factor-related apoptosis-inducing ligand resistance in lung cancer cells.

نویسندگان

  • Cigdem Aydin
  • Ahter D Sanlioglu
  • Bahri Karacay
  • Gulay Ozbilim
  • Levent Dertsiz
  • Omer Ozbudak
  • Cezmi A Akdis
  • Salih Sanlioglu
چکیده

Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells. However, studies have indicated that more than half of human tumors exhibit TRAIL resistance. Although the mechanism of TRAIL resistance is not understood, it represents a barrier to any TRAIL-mediated gene therapy approach. In addition, no correlation between TRAIL receptor (TRAIL-R) expression profile and TRAIL resistance has been demonstrated in cancer cells. In this study, three different lung cancer cell lines and three different primary cell cultures established from patients with lung cancer (two patients with squamous cell lung carcinoma and one with adenocarcinoma) were screened for sensitivity to adenoviral delivery of TRAIL. Whereas TRAIL-resistant primary lung cell cultures and the A549 lung cancer cell line exhibited high levels of surface decoy receptor-2 (DcR2/TRAIL-R4) expression, TRAIL-sensitive lung cancer cell lines (HBE and H411) failed to express it. A DcR2 short interfering RNA (siRNA) approach involving three different siRNA constructs in combination downregulated DcR2/TRAIL-R4 expression and sensitized lung cancer cells to TRAIL-induced apoptosis. Immunohistochemical staining of samples from 10 patients with lung carcinoma suggested that high-level DcR2/TRAIL-R4 expression is a common phenotype observed in patients with non-small cell lung carcinoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells.

Cholangiocarcinomas are usually fatal neoplasms originating from bile duct epithelia. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for cancer therapy, including cholangiocarcinoma. However, many cholangiocarcinoma cells are resistant to TRAIL-mediated apoptosis. Thus, our aim was to examine the intracellular mechanisms responsible for TRAIL resistance in ...

متن کامل

Survivin downregulation by siRNA sensitizes human hepatoma cells to TRAIL-induced apoptosis.

Survivin, an anti-apoptotic protein, is abundantly expressed in a variety of cancer cells, including hepatoma cells, resulting in the resistance of these cells to various apoptotic stimuli. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known to induce cancer cell-specific apoptosis, but hepatoma cells are resistant to TRAIL-induced apoptosis. In the present study, we ...

متن کامل

Anti-gout agent allopurinol exerts cytotoxicity to human hormone-refractory prostate cancer cells in combination with tumor necrosis factor-related apoptosis-inducing ligand.

Allopurinol has been used for the treatment of gout and conditions associated with hyperuricemia for several decades. We explored the potential of allopurinol on cancer treatment. Allopurinol did not expose cytotoxicity as a single treatment in human hormone refractory prostate cancer cell lines, PC-3 and DU145. However, allopurinol drastically induced apoptosis of PC-3 and DU145 in combination...

متن کامل

Synergistic Effect of Subtoxic-dose Cisplatin and TRAIL to Mediate Apoptosis by Down-regulating Decoy Receptor 2 and Up-regulating Caspase-8, Caspase-9 and Bax Expression on NCI-H460 and A549 Cells

Objective(s): Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can selectively induce apoptosis in tumor cells, more than half of tumors including non-small cell lung cancer (NSCLC) exhibit TRAIL-resistance. The purpose of this study was to determine whether subtoxic-dose cisplatin and TRAIL could synergistically enhance apoptosis on NSCLC cells and investigate its under...

متن کامل

Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells

Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its agonistic receptors have been identified as highly promising antitumor agents preferentially eliminating cancer cells with minimal damage, the emergence of TRAIL resistance in most cancers may contribute to therapeutic failure. Thus, there is an urgent need for new approaches to overcome TRAIL resistance. Gold nano...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human gene therapy

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2007