Experimental Validation of Ls-svm Based Fault Identification in Analog Circuits Using Frequency Features

نویسندگان

  • Arvind Sai
  • Sarathi Vasan
  • Bing Long
  • Michael Pecht
چکیده

Analog circuits have been widely used in diverse fields such as avionics, telecommunications, healthcare, and more. Detection and identification of soft faults in analog circuits subjected to component variation within standard tolerance range is critical for the development of reliable electronic systems, and thus forms the primary focus of this paper. In this paper, we have experimentally demonstrated a reliable and accurate (99%) fault diagnostic framework consisting of a sweep signal generator, spectral estimator and a least squares-support vector machine. The proposed method is completely automated and can be extended for testing other analog circuits whose performances are mainly determined by their frequency characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine

One of the most important methods for transformers fault diagnosis (especially mechanical defects) is the frequency response analysis (FRA) method. The most important step in the FRA diagnostic process is to differentiate the faults and classify them in different classes. This paper uses the intelligent support vector machine (SVM) method to classify transformer faults. For this purpose, two gr...

متن کامل

Numerical Control Machine Tool Fault Diagnosis Using Hybrid Stationary Subspace Analysis and Least Squares Support Vector Machine with a Single Sensor

Tool fault diagnosis in numerical control (NC) machines plays a significant role in ensuring manufacturing quality. However, current methods of tool fault diagnosis lack accuracy. Therefore, in the present paper, a fault diagnosis method was proposed based on stationary subspace analysis (SSA) and least squares support vector machine (LS-SVM) using only a single sensor. First, SSA was used to e...

متن کامل

Analog Circuit Intelligent Fault Diagnosis Based on Greedy Kpca and One-against-rest Svm Approach

Fault diagnosis of analog circuits is essential for guaranteeing the reliability and maintainability of electronic systems. A novel analog circuit fault diagnosis approach based on greedy kernel principal component analysis (KPCA) and one-against-rest support vector machine (OARSVM) is proposed in this paper. In order to obtain a successful fault classifier, eliminating noise and extracting fau...

متن کامل

A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks

A classification technique using Support Vector Machine (SVM) classifier for detection of rolling element bearing fault is presented here.  The SVM was fed from features that were extracted from of vibration signals obtained from experimental setup consisting of rotating driveline that was mounted on rolling element bearings which were run in normal and with artificially faults induced conditio...

متن کامل

ECT and LS-SVM Based Void Fraction Measurement of Oil-Gas Two-Phase Flow

A method based on Electrical Capacitance Tomography (ECT) and an improved Least Squares Support Vector Machine (LS-SVM) is proposed for void fraction measurement of oil-gas two-phase flow. In the modeling stage, to solve the two problems in LS-SVM, pruning skills are employed to make LS-SVM sparse and robust; then the Real-Coded Genetic Algorithm is introduced to solve the difficult problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011