Enteroinvasive bacteria directly activate expression of iNOS and NO production in human colon epithelial cells.
نویسندگان
چکیده
In these studies, we investigated whether bacterial infection of human colon epithelial cells is a sufficient stimulus to upregulate epithelial cell expression of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) production. Human colon epithelial cells (Caco-2 and HT-29) rapidly upregulated iNOS mRNA and protein expression and NO production after infection with enteroinvasive Escherichia coli, Salmonella dublin, or Shigella flexneri but not after infection with noninvasive E. coli or an invasion-deficient mutant of S. dublin. Bacterial infection in the absence of added cytokines was as potent or more potent a stimulus of iNOS expression and NO production as stimulation of cells with combinations of cytokines known to strongly upregulate this epithelial cell response. Enteroinvasive E. coli increased epithelial NO production to a greater extent than S. dublin, although S. dublin was a stronger stimulus of epithelial cell interleukin-8 (IL-8) production. After enteroinvasive E. coli infection of polarized epithelial cell monolayers, nitrite, a stable NO end product, was released predominately into the apical compartment early after infection, whereas IL-8 was released in parallel into the basolateral compartment. These studies suggest NO and/or its redox products are an important component of the intestinal epithelial cell response to microbial infection.
منابع مشابه
EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملThiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages
The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...
متن کاملProduction of MDC/CCL22 by human intestinal epithelial cells.
The intestinal mucosa contains a subset of lymphocytes that produce Th2 cytokines, yet the signals responsible for the recruitment of these cells are poorly understood. Macrophage-derived chemokine (MDC/CCL22) is a recently described CC chemokine known to chemoattract the Th2 cytokine producing cells that express the receptor CCR4. The studies herein demonstrate the constitutive production of M...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 275 3 شماره
صفحات -
تاریخ انتشار 1998