An Arabidopsis Plasma Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas syringae Effector Protein AvrB for Stomatal Invasion.
نویسندگان
چکیده
Stomata are natural openings through which many pathogenic bacteria enter plants. Successful bacterial pathogens have evolved various virulence factors to promote stomatal opening. Here, we show that the Pseudomonas syringae type III effector protein AvrB induces stomatal opening and enhances bacterial virulence in a manner dependent on RPM1-INTERACTING4 (RIN4), which promotes stomatal opening by positively regulating the Arabidopsis plasma membrane H(+)-ATPase (AHA1), which is presumed to directly regulate guard cell turgor pressure. In support of a role of AHA1 in AvrB-induced stomatal opening, AvrB enhances ATPase activity in plants. Unexpectedly, AHA1 promotes the interaction between the jasmonate (JA) receptor CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM-DOMAIN (JAZ) proteins and enhances JA signaling. JA signaling is required for optimum stomatal infection in AHA1-active plants. Similarly, AvrB also induces the COI1-JAZ9 interaction and the degradation of multiple JAZ proteins. AvrB-induced stomatal opening and virulence require the canonical JA signaling pathway, which involves the COI1 and NAC transcription factors. The findings thus point to a previously unknown pathway exploited by P. syringae that acts upstream of COI1 to regulate JA signaling and stomatal opening.
منابع مشابه
Arabidopsis TAO1 is a TIR-NB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB.
The type III effector protein encoded by avirulence gene B (AvrB) is delivered into plant cells by pathogenic strains of Pseudomonas syringae. There, it localizes to the plasma membrane and triggers immunity mediated by the Arabidopsis coiled-coil (CC)-nucleotide binding (NB)-leucine-rich repeat (LRR) disease resistance protein RPM1. The sequence unrelated type III effector avirulence protein e...
متن کاملPseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4.
Pathogenic microbes often modulate phytohormone physiology in the host to their advantage. We previously showed that the Pseudomonas syringae effector protein AvrB perturbs hormone signaling, as exemplified by upregulated expression of jasmonic acid response genes, and enhances plant susceptibility. Here we show that these effects of AvrB require the Arabidopsis mitogen-activated protein kinase...
متن کاملRIN4 Functions with Plasma Membrane H+-ATPases to Regulate Stomatal Apertures during Pathogen Attack
Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been i...
متن کاملArabidopsis NDR1 is an integrin-like protein with a role in fluid loss and plasma membrane-cell wall adhesion.
Arabidopsis (Arabidopsis thaliana) NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), a plasma membrane-localized protein, plays an essential role in resistance mediated by the coiled-coil-nucleotide-binding site-leucine-rich repeat class of resistance (R) proteins, which includes RESISTANCE TO PSEUDOMONAS SYRINGAE2 (RPS2), RESISTANCE TO PSEUDOMONAS SYRINGAE PV MACULICOLA1, and RPS5. Infection with ...
متن کاملType III Effector Activation via Nucleotide Binding, Phosphorylation, and Host Target Interaction
The Pseudomonas syringae type III effector protein avirulence protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein (resistance to Pseudomonas maculicula protein 1 [RPM1]-interacting protein). RIN4 is a regulator of basal host defense responses. Targeting of RIN4 by AvrB is recognized by the host RPM1 nucleotide-binding leucine-rich repeat disease resista...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 27 7 شماره
صفحات -
تاریخ انتشار 2015