Differential dissipativity theory for dominance analysis
نویسندگان
چکیده
High-dimensional systems that have a lowdimensional dominant behavior allow for model reduction and simplified analysis. We use differential analysis to formalize this important concept in a nonlinear setting. We show that dominance can be studied through linear dissipation inequalities and an interconnection theory that closely mimics the classical analysis of stability by means of dissipativity theory. In this approach, stability is seen as the limiting situation where the dominant behavior is 0-dimensional. The generalization opens novel tractable avenues to study multistability through 1-dominance and limit cycle oscillations through 2-dominance.
منابع مشابه
Dominance analysis of linear complementarity systems
The paper extends the concepts of dominance and p-dissipativity to the non-smooth family of linear complementarity systems. Dominance generalizes incremental stability whereas p-dissipativity generalizes incremental passivity. The generalization aims at an interconnection theory for the design and analysis of switching and oscillatory systems. The approach is illustrated by a detailed study of ...
متن کاملDissipativity Theory for Nesterov's Accelerated Method
In this paper, we adapt the control theoretic concept of dissipativity theory to provide a natural understanding of Nesterov’s accelerated method. Our theory ties rigorous convergence rate analysis to the physically intuitive notion of energy dissipation. Moreover, dissipativity allows one to efficiently construct Lyapunov functions (either numerically or analytically) by solving a small semide...
متن کاملOn Differentially Dissipative Dynamical Systems
Dissipativity is an essential concept of systems theory. The paper provides an extension of dissipativity, named differential dissipativity, by lifting storage functions and supply rates to the tangent bundle. Differential dissipativity is connected to incremental stability in the same way as dissipativity is connected to stability. It leads to a natural formulation of differential passivity wh...
متن کاملCommunications in Applied Analysis 18 (2014) 455–522 NONLINEAR DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS RIGHT-HAND SIDES: FILIPPOV SOLUTIONS, NONSMOOTH STABILITY AND DISSIPATIVITY THEORY, AND OPTIMAL DISCONTINUOUS FEEDBACK CONTROL
In this paper, we develop stability, dissipativity, and optimality notions for dynamical systems with discontinuous vector fields. Specifically, we consider dynamical systems with Lebesgue measurable and locally essentially bounded vector fields characterized by differential inclusions involving Filippov set-valued maps specifying a set of directions for the system velocity and admitting Filipp...
متن کاملDissipativity of θ-methods and one-leg methods for nonlinear neutral delay integro-differential equations
In this paper we study the dissipativity of a special class of nonlinear neutral delay integro-differential equations. The dissipativity of three kinds of important numerical methods, the linear θ-methods, one-leg θmethods, and the one-leg methods is obtained when they are applied to these problems. Numerical experiments are presented to check our findings. Key–Words: Linear θ-methods, One-leg ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.01721 شماره
صفحات -
تاریخ انتشار 2017