Reliability of Dynamic Causal Modeling using the Statistical Parametric Mapping Toolbox

نویسندگان

  • Pegah Tayaranian Hosseini
  • Shouyan Wang
  • Julie Brinton
  • Steven L. Bell
  • David M. Simpson
چکیده

Dynamic causal modeling (DCM) is a recently developed approach for effective connectivity measurement in the brain. It has attracted considerable attention in recent years and quite widespread used to investigate brain connectivity in response to different tasks as well as auditory, visual, and somatosensory stimulation. This method uses complex algorithms, and currently the only implementation available is the Statistical Parametric Mapping (SPM8) toolbox with functionality for use on EEG and fMRI. The objective of the current work is to test the robustness of the toolbox when applied to EEG, by comparing results obtained from various versions of the software and operating systems when using identical datasets. Contrary to expectations, it was found that estimated connectivities were not consistent between different operating systems, the version of SPM8, or the version of MATLAB being used. The exact cause of this problem is not clear, but may relate to the high number of parameters in the model. Caution is thus recommended when interpreting the results of DCM estimated with the SPM8 software. Reliability of Dynamic Causal Modeling using the Statistical Parametric Mapping Toolbox

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Modeling and Identification of The Hydro Turbine Using Field Test Data (Case Study: Abbaspour Power Plant)

In order to study the stability and fast dynamic of the power grid, modeling and identification of hydropower plant systems such as turbine, governor and excitation is required. Turbine is a mechanical device and usually identified through field tests. In this paper, the identification of the unit 8 of Abbaspour power plant is conducted. The linear and nonlinear model of the Francis turbine are...

متن کامل

Investigating causal linkages and strategic mapping in the balanced scorecard: A case study approach in the banking industry sector

One of the main challenges of strategic management is implementing the strategies. Designing the strategy map in Balanced Scorecard framework to determine the causality between strategic objectives is one of the most important issues in implementing the strategies. In designing the strategy map with intuition and judgment, the link between strategic objectives is not clear and it is not obvious...

متن کامل

Reliability analysis of repairable systems using system dynamics modeling and simulation

Repairable standby system’s study and analysis is an important topic in reliability. Analytical techniques become very complicated and unrealistic especially for modern complex systems. There have been attempts in the literature to evolve more realistic techniques using simulation approach for reliability analysis of systems. This paper proposes a hybrid approach called as Markov system ...

متن کامل

The Causal Model of Brand Personality,Risk Aversion and Customer Loyalty

The purpose of this research was to explain the relationship between the personality of brands with risk aversion and customer loyalty. This research was applied in terms of purpose, descriptive correlation one in terms of information gathering and based on structural equation modeling. The statistical population consisted of all customers with credible brands (5 famous and high-income brands s...

متن کامل

MatchIt: Nonparametric Preprocessing for Parametric Causal Inference

MatchIt implements the suggestions of Ho, Imai, King, and Stuart (2007) for improving parametric statistical models by preprocessing data with nonparametric matching methods. MatchIt implements a wide range of sophisticated matching methods, making it possible to greatly reduce the dependence of causal inferences on hard-to-justify, but commonly made, statistical modeling assumptions. The softw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJSDA

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014