Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

نویسندگان

  • Maksym Yarema
  • Stefan Pichler
  • Mykhailo Sytnyk
  • Robert Seyrkammer
  • Rainer T Lechner
  • Gerhard Fritz-Popovski
  • Dorota Jarzab
  • Krisztina Szendrei
  • Roland Resel
  • Oleksandra Korovyanko
  • Maria Antonietta Loi
  • Oskar Paris
  • Günter Hesser
  • Wolfgang Heiss
چکیده

Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED.

We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong modifications of the QD emission are ach...

متن کامل

Multispectral imaging via luminescent down-shifting with colloidal quantum dots

The high infrared quantum yield, continuous absorption spectrum, and band edge tunability of colloidal quantum dots (QD) has opened up new opportunities to use luminescent down shifting for multispectral imaging in the infrared. We demonstrate a QD sensitized short wavelength infrared (SWIR) camera which is capable of UV-SWIR multispectral imaging. The application of multispectral cameras for U...

متن کامل

Ultrafast spontaneous emission source using plasmonic nanoantennas

Typical emitters such as molecules, quantum dots and semiconductor quantum wells have slow spontaneous emission with lifetimes of 1-10 ns, creating a mismatch with high-speed nanoscale optoelectronic devices such as light-emitting diodes, single-photon sources and lasers. Here we experimentally demonstrate an ultrafast (<11 ps) yet efficient source of spontaneous emission, corresponding to an e...

متن کامل

Single-step synthesis of silver sulfide nanocrystals in arsenic trisulfide

Silver sulfide nanocrystals and chalcogenide glasses (ChGs) are two distinct classes of semiconductor materials that have been exploited for new infrared technologies. Each one exhibits particular optoelectronic phenomena, which could be encompassed in a hybrid material. However, the integration of uniformly distributed crystalline phases within an amorphous matrix is not always an easy task. I...

متن کامل

Low-temperature synthesis of CdSe nanocrystal quantum dots.

A method for fabricating colloidal CdSe nanocrystals at low reaction temperatures was developed. The transition from CdSe clusters to continuously-growing nanocrystals was found to be crucial in the formation of high-quality quantum dots with narrow size distribution and efficient, tunable optical properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 2011