NFAT isoforms control activity-dependent muscle fiber type specification.
نویسندگان
چکیده
The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are composed and maintained in response to activity is largely unknown. Here, we show that 4 nuclear factor of activated T cell (NFAT) family members act coordinately downstream of Cn in the specification of muscle fiber types. We analyzed the role of NFAT family members in vivo by transient transfection in skeletal muscle using a loss-of-function approach by RNAi. Our results show that, depending on the applied activity pattern, different combinations of NFAT family members translocate to the nucleus contributing to the transcription of fiber type specific genes. We provide evidence that the transcription of slow and fast myosin heavy chain (MyHC) genes uses different combinations of NFAT family members, ranging from MyHC-slow, which uses all 4 NFAT isoforms, to MyHC-2B, which only uses NFATc4. Our data contribute to the elucidation of the mechanisms whereby activity can modulate the phenotype and performance of skeletal muscle.
منابع مشابه
NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching.
Calcineurin (Cn) signaling has been implicated in nerve activity-dependent fiber type specification in skeletal muscle, but the downstream effector pathway has not been established. We have investigated the role of the transcription factor nuclear factor of activated T cells (NFAT), a major target of Cn, by using an in vivo transfection approach in regenerating and adult rat muscles. NFAT trans...
متن کاملRegulation of skeletal muscle fiber type and slow myosin heavy chain 2 gene expression by inositol trisphosphate receptor 1.
Innervation-dependent signaling cascades that control activation of downstream transcription factors regulate expression of skeletal muscle fiber type-specific genes. Many of the innervation-regulated signaling cascades in skeletal muscle are dependent on intracellular calcium and the mechanisms by which calcium is released from the sarcoplasmic reticulum (SR). We report that the inositol trisp...
متن کاملEffect of cyclosporin A treatment on the in vivo regulation of type I MHC gene expression.
Rat soleus muscle consists predominantly of slow type I fibers. We have shown previously through deletion analysis that the highest level of reporter activity that we measure when injecting type I myosin heavy chain (MHC) promoter (MHC(1))-linked luciferase plasmid into soleus muscles depends on the presence of a 550-bp upstream enhancer (3,450-2,900) region of the promoter. Because the calcine...
متن کاملOxytocin-Stimulated NFAT Transcriptional Activation in Human Myometrial Cells
Oxytocin (OXT) is a peptide hormone that binds the OXT receptor on myometrial cells, initiating an intracellular signaling cascade, resulting in accumulation of intracellular calcium and smooth muscle contraction. In other systems, an elevation of intracellular Ca(2+) stimulates nuclear translocation of the transcription factor, nuclear factor of activated T cells (NFAT), which is transcription...
متن کاملThe calcineurin-NFAT pathway and muscle fiber-type gene expression.
To test for a role of the calcineurin-NFAT (nuclear factor of activated T cells) pathway in the regulation of fiber type-specific gene expression, slow and fast muscle-specific promoters were examined in C2C12 myotubes and in slow and fast muscle in the presence of calcineurin or NFAT2 expression plasmids. Overexpression of active calcineurin in myotubes induced both fast and slow muscle-specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 32 شماره
صفحات -
تاریخ انتشار 2009