Aggregate Pseudorandom Functions and Connections to Learning

نویسندگان

  • Aloni Cohen
  • Shafi Goldwasser
  • Vinod Vaikuntanathan
چکیده

In the first part of this work, we introduce a new type of pseudo-random function for which “aggregate queries” over exponential-sized sets can be efficiently answered. We show how to use algebraic properties of underlying classical pseudo random functions, to construct such “aggregate pseudo-random functions” for a number of classes of aggregation queries under cryptographic hardness assumptions. For example, one aggregate query we achieve is the product of all function values accepted by a polynomial-sized read-once boolean formula. On the flip side, we show that certain aggregate queries are impossible to support. Aggregate pseudo-random functions fall within the framework of the work of Goldreich, Goldwasser, and Nussboim [GGN10] on the “Implementation of Huge Random Objects,” providing truthful implementations of pseudorandom functions for which aggregate queries can be answered. In the second part of this work, we show how various extensions of pseudo-random functions considered recently in the cryptographic literature, yield impossibility results for various extensions of machine learning models, continuing a line of investigation originated by Valiant and Kearns in the 1980s. The extended pseudo-random functions we address include constrained pseudo random functions, aggregatable pseudo random functions, and pseudo random functions secure under related-key attacks. ∗MIT. †MIT and the Weizmann Institute of Science. ‡MIT. 1 c ©IACR 2015. This article is a minor revision of the version published by Springer-Verlag. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 9 (2015)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudorandom Functions with Structure: Extensions and Implications

In the first part of this work, we introduce a new type of pseudo-random function for which "aggregate queries" over exponential-sized sets can be efficiently answered. We show how to use algebraic properties of underlying classical pseudo random functions, to construct such "aggregate pseudo-random functions" for a number of classes of aggregation queries under cryptographic hardness assumptio...

متن کامل

Multilinear and Aggregate Pseudorandom Functions: New Constructions and Improved Security

Since its introduction, pseudorandom functions (PRFs) have become one of the main building blocks of cryptographic protocols. In this work, we revisit two recent extensions of standard PRFs, namely multilinear and aggregate PRFs, and provide several new results for these primitives. In the case of aggregate PRFs, one of our main results is a proof of security for the Naor-Reingold PRF with resp...

متن کامل

Multilinear Pseudorandom Functions

We define the new notion of a multilinear pseudorandom function (PRF), and give a construction with a proof of security assuming the hardness of the decisional Diffie-Hellman problem. A direct application of our construction yields (non-multilinear) PRFs with aggregate security from the same assumption, resolving an open question in [CGV15]. Additionally, multilinear PRFs give a new way of view...

متن کامل

Unique Aggregate Signatures with Applications to Distributed Verifiable Random Functions

The computation process of a Distributed Verifiable Random Function (DVRF) on some input specified by the user involves multiple, possibly malicious servers, and results in a publicly verifiable pseudorandom output to the user. Previous DVRF constructions assumed trusted generation of secret keys for the servers and imposed a threshold on the number of corrupted servers. In this paper we propos...

متن کامل

Correlation bounds for polynomials over {0, 1}1

This article is a unified treatment of the state-of-the-art on the fundamental challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over {0, 1}. It discusses long-standing results and recent developments, related proof techniques, and connections with pseudorandom generators. It also suggests several research directions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015