Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae.
نویسندگان
چکیده
Root nodule symbiosis (RNS) is one of the most efficient biological systems for nitrogen fixation and it occurs in 90% of genera in the Papilionoideae, the largest subfamily of legumes. Most papilionoid species show evidence of a polyploidy event that occurred approximately 58 Ma. Although polyploidy is considered to be an important evolutionary force in plants, the role of this papilionoid polyploidy event, especially its association with RNS, is not understood. In this study, we explored this role using an integrated comparative genomic approach and conducted gene expression comparisons and gene ontology enrichment analyses. The results show the following: 1) Approximately a quarter of the papilionoid-polyploidy-derived duplicate genes are retained; 2) there is a striking divergence in the level of expression of gene duplicate pairs derived from the polyploidy event; and 3) the retained duplicates are frequently involved in the processes crucial for RNS establishment, such as symbiotic signaling, nodule organogenesis, rhizobial infection, and nutrient exchange and transport. Thus, we conclude that the papilionoid polyploidy event might have further refined RNS and induced a more robust and enhanced symbiotic system. This conclusion partly explains the widespread occurrence of the Papilionoideae.
منابع مشابه
Polyploidy Did Not Predate the Evolution of Nodulation in All Legumes
BACKGROUND Several lines of evidence indicate that polyploidy occurred by around 54 million years ago, early in the history of legume evolution, but it has not been known whether this event was confined to the papilionoid subfamily (Papilionoideae; e.g. beans, medics, lupins) or occurred earlier. Determining the timing of the polyploidy event is important for understanding whether polyploidy mi...
متن کاملA phylogenetic strategy based on a legume-specific whole genome duplication yields symbiotic cytokinin type-A response regulators.
Legumes host their Rhizobium spp. symbiont in novel root organs called nodules. Nodules originate from differentiated root cortical cells that dedifferentiate and subsequently form nodule primordia, a process controlled by cytokinin. A whole-genome duplication has occurred at the root of the legume Papilionoideae subfamily. We hypothesize that gene pairs originating from this duplication event ...
متن کاملNon-Additive Transcriptomic Responses to Inoculation with Rhizobia in a Young Allopolyploid Compared with Its Diploid Progenitors
Root nodule symbioses (nodulation) and whole genome duplication (WGD, polyploidy) are both important phenomena in the legume family (Leguminosae). Recently, it has been proposed that polyploidy may have played a critical role in the origin or refinement of nodulation. However, while nodulation and polyploidy have been studied independently, there have been no direct studies of mechanisms affect...
متن کاملNitrogen-fixing Rhizobium-legume symbiosis: are polyploidy and host peptide-governed symbiont differentiation general principles of endosymbiosis?
The symbiosis between rhizobia soil bacteria and legumes is facultative and initiated by nitrogen starvation of the host plant. Exchange of signal molecules between the partners leads to the formation of root nodules where bacteria are converted to nitrogen-fixing bacteroids. In this mutualistic symbiosis, the bacteria provide nitrogen sources for plant growth in return for photosynthates from ...
متن کاملTracing nonlegume orthologs of legume genes required for nodulation and arbuscular mycorrhizal symbioses.
Most land plants can form a root symbiosis with arbuscular mycorrhizal (AM) fungi for assimilation of inorganic phosphate from the soil. In contrast, the nitrogen-fixing root nodule symbiosis is almost completely restricted to the legumes. The finding that the two symbioses share common signaling components in legumes suggests that the evolutionarily younger nitrogen-fixing symbiosis has recrui...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology and evolution
دوره 30 12 شماره
صفحات -
تاریخ انتشار 2013