Improving the Prediction of Winter Precipitation and Temperature over the Continental United States: Role of the ENSO State in Developing Multimodel Combinations
نویسندگان
چکیده
Recent research into seasonal climate prediction has focused on combining multiple atmospheric general circulation models (GCMs) to develop multimodel ensembles. A new approach to combining multiple GCMs is proposed by analyzing the skill levels of candidate models contingent on the relevant predictor(s) state. To demonstrate this approach, historical simulations of winter (December–February, DJF) precipitation and temperature from seven GCMs were combined by evaluating their skill—represented by mean square error (MSE)—over similar predictor (DJF Niño-3.4) conditions. The MSE estimates are converted into weights for each GCM for developing multimodel tercile probabilities. A total of six multimodel schemes are considered that include combinations based on pooling of ensembles as well as on the long-term skill of the models. To ensure the improved skill exhibited by the multimodel scheme is statistically significant, rigorous hypothesis tests were performed comparing the skill of multimodels with each individual model’s skill. The multimodel combination contingent on Niño-3.4 shows improved skill particularly for regions whose winter precipitation and temperature exhibit significant correlation with Niño-3.4. Analyses of these weights also show that the proposed multimodel combination methodology assigns higher weights for GCMs and lesser weights for climatology during El Niño and La Niña conditions. On the other hand, because of the limited skill of GCMs during neutral Niño-3.4 conditions, the methodology assigns higher weights for climatology resulting in improved skill from the multimodel combinations. Thus, analyzing GCMs’ skill contingent on the relevant predictor state provides an alternate approach for multimodel combinations such that years with limited skill could be replaced with climatology.
منابع مشابه
Improved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs
[1] A new approach to combine precipitation forecasts from multiple models is evaluated by analyzing the skill of the candidate models contingent on the forecasted predictor(s) state. Using five leading coupled GCMs (CGCMs) from the ENSEMBLES project, we develop multimodel precipitation forecasts over the continental United States (U.S) by considering the forecasted Nino3.4 from each CGCM as th...
متن کاملکاربرد CCA به منظور ارزیابی و مقایسه توانایی SOI و SST Nino’s در پیشبینی بارش زمستانه سواحل دریای خزر
In Iran, about 75% of national rice production is supplied in Gilan and Mazandaran proviences which have the highest amount of precipitation. Seasonal prediction of rainfall induces significant improvement on yield production and on preventing climate hazardz over these feritle areas. Canonical correlation analysis (CCA) model was carried out evaluates the possibility of the prediction of win...
متن کاملکاربرد CCA به منظور ارزیابی و مقایسه توانایی SOI و SST Nino’s در پیشبینی بارش زمستانه سواحل دریای خزر
In Iran, about 75% of national rice production is supplied in Gilan and Mazandaran proviences which have the highest amount of precipitation. Seasonal prediction of rainfall induces significant improvement on yield production and on preventing climate hazardz over these feritle areas. Canonical correlation analysis (CCA) model was carried out evaluates the possibility of the prediction of win...
متن کاملSummer precipitation determinant factors of Iran's South-East
Indian Ocean is known as a source of moisture for southeast of Iran due to summer precipitation. In this study, in order to investigate the role of SST of Indian Ocean, and the convergence and divergence fields in the precipitation of southeast of Iran, precipitation data of five synoptic stations were used during 2000-2010, including Iranshahr, Khash, ChahBahar, Zabul, and Saravan. To investig...
متن کاملVariations of Twentieth-Century Temperature and Precipitation Extreme Indicators in the Northeast United States
An examination of five temperature and five precipitation extreme indicators reveals an increase in both temperature and precipitation extremes over the 1926–2000 period in the northeast United States, with most of this increase occurring over the past four decades. Empirical orthogonal function (EOF) analysis of winter frost days (FD) and warm nights (TN90) and also winter consecutive dry days...
متن کامل