Speech/Non-Speech Segmentation Based on Phoneme Recognition Features

نویسندگان

  • Janez Zibert
  • Nikola Pavesic
  • France Mihelic
چکیده

This work assesses different approaches for speech and non-speech segmentation of audio data and proposes a new, high-level representation of audio signals based on phoneme recognition features suitable for speech/non-speech discrimination tasks. Unlike previous model-based approaches, where speech and non-speech classes were usually modeled by several models, we develop a representation where just one model per class is used in the segmentation process. For this purpose, four measures based on consonant-vowel pairs obtained from different phoneme speech recognizers are introduced and applied in two different segmentation-classification frameworks. The segmentation systems were evaluated on different broadcast news databases. The evaluation results indicate that the proposed phoneme recognition features are better than the standard mel-frequency cepstral coefficients and posterior probability-based features (entropy and dynamism). The proposed features proved to be more robust and less sensitive to different training and unforeseen conditions. Additional experiments with fusion models based on cepstral and the proposed phoneme recognition features produced the highest scores overall, which indicates that the most suitable method for speech/non-speech segmentation is a combination of low-level acoustic features and high-level recognition features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

بهبود عملکرد سیستم بازشناسی گفتار پیوسته بوسیله ویژگی‌های استخراج شده از مانیفولدهای گفتاری در فضای بازسازی شده فاز

The design for new feature extraction methods out of the speech signal and combination of their obtained information is one of the most effective approaches to improve the performance of automatic speech recognition (ASR) system. Recent researches have been shown that the speech signal contains nonlinear and chaotic properties, but the effects of these properties are not used in the continuous ...

متن کامل

Allophone-based acoustic modeling for Persian phoneme recognition

Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...

متن کامل

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Novel Entropy based moving average

The training of precise speech recognition models depends on accurate segmentation of the phonemes in a training corpus. Segmentation is typically performed using HMMs, but recent speech recognition work suggests that the transient acoustic features characteristic of manner-class phoneme boundaries (landmarks) may be more precisely localized using acoustic classifiers specifically designed for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006