Neuraminidase-Dependent Degradation of Polysialic Acid Is Required for the Lamination of Newly Generated Neurons
نویسندگان
چکیده
Hippocampal granule cells (GCs) are generated throughout the lifetime and are properly incorporated into the innermost region of the granule cell layer (GCL). Hypotheses for the well-regulated lamination of newly generated GCs suggest that polysialic acid (PSA) is present on the GC surface to modulate GC-to-GC interactions, regulating the process of GC migration; however, direct evidence of this involvement is lacking. We show that PSA facilitates the migration of newly generated GCs and that the activity of N-acetyl-α-neuraminidase 1 (NEU1, sialidase 1) cleaves PSA from immature GCs, terminating their migration in the innermost GCL. Developing a migration assay of immature GCs in vitro, we found that the pharmacological depletion of PSA prevents the migration of GCs, whereas the inhibition of PSA degradation with a neuraminidase inhibitor accelerates this migration. We found that NEU1 is highly expressed in immature GCs. The knockdown of NEU1 in newly generated GCs in vivo increased PSA presence on these cells, and attenuated the proper termination of GC migration in the innermost GCL. In conclusion, this study identifies a novel mechanism that underlies the proper lamination of newly generated GCs through the modulation of PSA presence by neuronal NEU1.
منابع مشابه
Detection of Neuraminidase Activity in Pseudomonas aeruginosa PAO1
Objective(s) Some properties of neuraminidase produced by Pseudomonas aeruginosa PAO1 growth in a defined medium (BHI) were examined and evaluated for its features. Materials and Methods The obtained supernatant enzyme of P. aeruginosa PAO1 cultures was used in a sensitive fluorometric assay by using 2'-(4-methylumbelliferyl) a-D-N acetylneuraminic acid as substrate. As hydrolyzing MUN with ...
متن کاملNCAM polysialic acid can regulate both cell-cell and cell-substrate interactions
We have proposed previously that the polysialic acid (PSA) moiety of NCAM can influence membrane-membrane apposition, and thereby serve as a selective regulator of a variety of contact-dependent cell interactions. In this study, cell and tissue culture models are used to obtain direct evidence that the presence of PSA on the surface membrane can affect both cell-cell and cell-substrate interact...
متن کاملRole of polysialic acid on outgrowth of rat olfactory receptor neurons
Towards elucidating the role of polysialic acid (PSA) in developing olfactory neuron of the rat, we injected neuraminidase (endo-N) into the olfactory nerve pathway under whole embryo culture, then employed immunohistochemistry to (i) detect expression of highly sialylated neural cell adhesion molecules (NCAM-H) and (ii) identify olfactory neurons via anti-microtubule-associated protein 1B (MAP...
متن کاملSerum Levels of Sialic Acid and Neuraminidase Activity in Cardiovascular, Diabetic and Diabetic Retinopathy Patients
Background: Sialic acid is a component of serum that is elevated in diseases such as diabetes and certain malignancies. The normal range of SSA concentration and serum neuraminidase activity in different populations are varied, probably due to racial differences. Objective: The purpose of the present study was to obtain the average SSA concentration and serum neuraminidase activity, in an Iran...
متن کاملThe laminar organization of the Drosophila ellipsoid body is semaphorin-dependent and prevents the formation of ectopic synaptic connections
The ellipsoid body (EB) in the Drosophila brain is a central complex (CX) substructure that harbors circumferentially laminated ring (R) neuron axons and mediates multifaceted sensory integration and motor coordination functions. However, what regulates R axon lamination and how lamination affects R neuron function remain unknown. We show here that the EB is sequentially innervated by small-fie...
متن کامل