Remarks on the blow-up criterion of the 3D Euler equations

نویسنده

  • Dongho Chae
چکیده

In this note we prove that the finite time blow-up of classical solutions of the 3-D homogeneous incompressible Euler equations is controlled by the Besov space, Ḃ0 ∞,1, norm of the two components of the vorticity. For the axisymmetric flows with swirl we deduce that the blow-up of solution is controlled by the same Besov space norm of the angular component of the vorticity. For the proof of these results we use the Beale-Kato-Majda criterion, and the special structure of the vortex stretching term in the vorticity formulation of the Euler equation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards a sufficient criterion for collapse in 3D Euler equations

A sufficient integral criterion for a blow-up solution of the Hopf equations (the Euler equations with zero pressure) is found. This criterion shows that a certain positive integral quantity blows up in a finite time under specific initial conditions. Blow-up of this quantity means that solution of the Hopf equation in 3D can not be continued in the Sobolev space H2(R3) for infinite time.

متن کامل

Global Regularity Criterion for the Magneto-Micropolar Fluid Equations

ω(t, x) ∈ Rand b(t, x) ∈ R, and p(t, x) ∈ R denote, respectively, the microrotational velocity, the magnetic field, and the hydrostatic pressure. μ, χ, κ, γ, and ] are positive numbers associated with properties of the material: μ is the kinematic viscosity, χ is the vortex viscosity, κ and γ are spin viscosities, and 1/] is the magnetic Reynold. u 0 , ω 0 , and b 0 are initial data for the vel...

متن کامل

On the blow-up problem and new a priori estimates for the 3D Euler and the Navier-Stokes equations

We study blow-up rates and the blow-up profiles of possible asymptotically self-similar singularities of the 3D Euler equations, where the sense of convergence and self-similarity are considered in various sense. We extend much further, in particular, the previous nonexistence results of self-similar/asymptotically self-similar singularities obtained in [2, 3]. Some implications the notions for...

متن کامل

Incompressible Euler Equations : the blow - up problem and related results

The question of spontaneous apparition of singularity in the 3D incompressible Euler equations is one of the most important and challenging open problems in mathematical fluid mechanics. In this survey article we review some of recent approaches to the problem. We first review Kato’s classical local well-posedness result in the Sobolev space and derive the celebrated Beale-Kato-Majda criterion ...

متن کامل

Finite Time Blow-up for the 3D Incompressible Euler Equations

We prove the finite time blow-up for solutions of the 3D incompressible Euler equations, which happens along the fluid particle trajectories starting from a set of points. This set is specified by the relation between the deformation tensor and the Hessian of pressure both coupled with the vorticity directions, associated with the initial data. As a corollary of this result we prove the finite ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004