Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO2 Nanocomposite Structure

نویسندگان

  • Jian-Zhi Chen
  • Tai-Hong Chen
  • Li-Wen Lai
  • Pei-Yu Li
  • Hua-Wen Liu
  • Yi-You Hong
  • Day-Shan Liu
چکیده

This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A p-type NiO film of high concentration in contact with the native n-type TiO₂ film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO₂ film. In addition, the photocatalytic activity of the NiO/TiO₂ nanocomposite structure was enhanced as the thickness of the p-NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, Characterization, and Investigation of Photocatalytic Activity of TiO2/SiO2/Co Nanocomposite Using Additives

Titanium dioxide has been widely used for photo-catalytic and self-cleaning activities. In this study, TiO2 /SiO2 /Co nanocomposite was prepared by sol-gel method in the presence of Polyvinyl Pyrrolidone (PVP), and Hydroxyl Propyl Cellulose (HPC) as additives, and characterized by IR spectra, Scanning Electron Microscopy (SEM), Energy Dispersive Analytical X-Ray (EDAX), and X-Ray Diffraction (X...

متن کامل

Codeposition of Fe3O4 Nanoparticles Sandwiched Between g-C3N4 and TiO2 Nanosheets: Structure, Characterization and High Photocatalytic Activity for Efficiently Degradation of Dye Pollutants

Novel ternary nanocomposite photocatalysts based on g-C3N4/Fe3O4/TiO2 nanosheet were synthesized using simple solid combustion, hydrothermal and wetness impregnation methods. The g-C3N4 nanosheet (2D)/ Fe3O4/ TiO2 nanosheet (2D) triad-interface nanocomposite arranged in the form of Fe3O4 nanoparticle was sandwiched and well dispersed on the surface between g-C3N4 and TiO2 nanosheets. The synthe...

متن کامل

Synthesis and Characterization of Anatase-coated Multiwall Carbon Nanotube for Improvement of Photocatalytic Activity

Sol-gel technique was used to coat multiwall carbon nanotubes (MWCNTs) with anatase titania to increasing the surface area and improve the photocatalytic activity of TiO2. Room temperature ballistic conduct of MWCNT combined with semiconducting behavior of anatase brought about a photocatalytic improvement of ~37 % with respect to the highest methyl orange decolorization flair. For characteriza...

متن کامل

بررسی خواص فوتوکاتالیستی لایه‌های NiO/TiO2 رشد داده شده به‌روش اکسیداسیون پلاسمای الکترولیتی/ رسوب الکتروفورتیک

Titanium dioxide-nickel oxide porous coatings were synthesized by Plasma Electrolytic Oxidation (PEO)/ ElectroPhoretic Deposition (EPD) in one step and within a short time. The main purpose of this research was to increase photocatalytic activity of titanium oxide by increasing surface area and coupling of titanium oxide with nickel oxide. Applied voltage effects on phase structure, surface mor...

متن کامل

Atomic Level In-situ Characterization of NiO-TiO2 Photocatalysts under Light Irradiation in Water Vapor

Photocatalysts are important for environmental cleanup of undesirable organic compounds and have potential applications for solar fuel generation either through water splitting or CO2 reduction [1]. It is now recognized that atomic level in-situ observations of catalytic materials are critical for understanding the structure-reactivity in catalysts. For photocatalysts, this requires that the sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015