Solution-Based Nanoengineering of Materials

نویسندگان

  • Z. Ryan Tian
  • Louise Criscenti
  • Erik Spoerke
  • Bonnie McKenzie
  • Randy Cygan
  • Jun Liu
  • James Voigt
  • Michael L. Machesky
چکیده

Solution-based synthesis is a powerful approach for creating nano-structured materials. Although there have been significant recent successes in its application to fabricating nanomaterials, the general principles that control solution synthesis are not well understood. The purpose of this LDRD project was to develop the scientific principles required to design and build unique nanostructures in crystalline oxides and II/VI semiconductors using solution-based molecular self-assembly techniques. The ability to synthesize these materials in a range of different nano-architectures (from controlled morphology nanocrystals to surface templated 3-D structures) has provided the foundation for new opportunities in such areas as interactive interfaces for optics, electronics, and sensors. The homogeneous precipitation of ZnO in aqueous solution was used primarily as the model system for the project. We developed a low temperature, aqueous solution synthesis route for preparation of large arrays of oriented ZnO nanostructures. Through control of heterogeneous nucleation and growth, methods to predicatively alter the ZnO microstructures by tailoring the surface chemistry of the crystals were established. Molecular mechanics simulations, involving single point energy calculations and full geometry optimizations, were developed to assist in selecting appropriate chemical systems and understanding physical adsorption and ultimately growth mechanisms in the design of oxide nanoarrays. The versatility of peptide chemistry in controlling the formation of cadmium sulfide nanoparticles and zinc oxide/cadmiun sulfide heterostructures was also demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleic acid-based nanoengineering: novel structures for biomedical applications.

Nanoengineering exploits the interactions of materials at the nanometre scale to create functional nanostructures. It relies on the precise organization of nanomaterials to achieve unique functionality. There are no interactions more elegant than those governing nucleic acids via Watson-Crick base-pairing rules. The infinite combinations of DNA/RNA base pairs and their remarkable molecular reco...

متن کامل

Thermal conductivity of skutterudite CoSb3 from first principles: Substitution and nanoengineering effects

CoSb3-based skutterudites are promising intermediate-temperature thermoelectric materials and fundamental understanding of the thermal transport in CoSb3 is crucial for further improving its performance. We herein calculate the lattice thermal conductivity κL of CoSb3 with first-principles methods and conduct a comprehensive analysis on phonon mode contribution, relaxation time and mean free pa...

متن کامل

Introduction to Self - Assembling DNA

Introduction. DNA, well-known as the predominant chemical for duplication and storage of genetic information in biology, has also recently been shown to be highly useful as an engineering material for construction of special purpose computers and micron-scale objects with nanometer-scale feature resolution. Properly designed synthetic DNA can be thought of as a programmable glue which, via spec...

متن کامل

Introduction to Self-Assembling DNA Nanostructures for Computation and Nanofabrication

Introduction. DNA, well-known as the predominant chemical for duplication and storage of genetic information in biology, has also recently been shown to be highly useful as an engineering material for construction of special purpose computers and micron-scale objects with nanometer-scale feature resolution. Properly designed synthetic DNA can be thought of as a programmable glue which, via spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005