An Improved k-Nearest Neighbor Algorithm for Text Categorization
نویسندگان
چکیده
k is the most important parameter in a text categorization system based on k-Nearest Neighbor algorithm (kNN).In the classification process, k nearest documents to the test one in the training set are determined firstly. Then, the predication can be made according to the category distribution among these k nearest neighbors. Generally speaking, the class distribution in the training set is uneven. Some classes may have more samples than others. Therefore, the system performance is very sensitive to the choice of the parameter k. And it is very likely that a fixed k value will result in a bias on large categories. To deal with these problems, we propose an improved kNN algorithm, which uses different numbers of nearest neighbors for different categories, rather than a fixed number across all categories. More samples (nearest neighbors) will be used for deciding whether a test document should be classified to a category, which has more samples in the training set. Preliminary experiments on Chinese text categorization show that our method is less sensitive to the parameter k than the traditional one, and it can properly classify documents belonging to smaller classes with a large k. The method is promising for some cases, where estimating the parameter k via cross-validation is not allowed.
منابع مشابه
An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملApplication of k Nearest Neighbor on Feature Projections Classi er to Text Categorization
This paper presents the results of the application of an instance based learning algorithm k Nearest Neighbor Method on Fea ture Projections k NNFP to text categorization and compares it with k Nearest Neighbor Classi er k NN k NNFP is similar to k NN ex cept it nds the nearest neighbors according to each feature separately Then it combines these predictions using a majority voting This prop er...
متن کاملApplication of k - Nearest Neighbor on FeatureProjections Classi er to Text
This paper presents the results of the application of an instance-based learning algorithm k-Nearest Neighbor Method on Feature Projections (k-NNFP) to text categorization and compares it with k-Nearest Neighbor Classiier (k-NN). k-NNFP is similar to k-NN except it nds the nearest neighbors according to each feature separately. Then it combines these predictions using a majority voting. This pr...
متن کاملNeighbor-weighted K-nearest neighbor for unbalanced text corpus
Text categorization or classification is the automated assigning of text documents to pre-defined classes based on their contents. Many of classification algorithms usually assume that the training examples are evenly distributed among different classes. However, unbalanced data sets often appear in many practical applications. In order to deal with uneven text sets, we propose the neighbor-wei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012