Amyloid-β induces synaptic dysfunction through G protein-gated inwardly rectifying potassium channels in the fimbria-CA3 hippocampal synapse

نویسندگان

  • Mauricio O. Nava-Mesa
  • Lydia Jiménez-Díaz
  • Javier Yajeya
  • Juan D. Navarro-Lopez
چکیده

Last evidences suggest that, in Alzheimer's disease (AD) early stage, Amyloid-β (Aβ) peptide induces an imbalance between excitatory and inhibitory neurotransmission systems resulting in the functional impairment of neural networks. Such alterations are particularly important in the septohippocampal system where learning and memory processes take place depending on accurate oscillatory activity tuned at fimbria-CA3 synapse. Here, the acute effects of Aβ on CA3 pyramidal neurons and their synaptic activation from septal part of the fimbria were studied in rats. A triphasic postsynaptic response defined by an excitatory potential (EPSP) followed by both early and late inhibitory potentials (IPSP) was evoked. The EPSP was glutamatergic acting on ionotropic receptors. The early IPSP was blocked by GABAA antagonists whereas the late IPSP was removed by GABAB antagonists. Aβ perfusion induced recorded cells to depolarize, increase their input resistance and decrease the late IPSP. Aβ action mechanism was localized at postsynaptic level and most likely linked to GABAB-related ion channels conductance decrease. In addition, it was found that the specific pharmacological modulation of the GABAB receptor effector, G-protein-coupled inward rectifier potassium (GirK) channels, mimicked all Aβ effects previously described. Thus, our findings suggest that Aβ altering GirK channels conductance in CA3 pyramidal neurons might have a key role in the septohippocampal activity dysfunction observed in AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amyloid-β(25-35) Modulates the Expression of GirK and KCNQ Channel Genes in the Hippocampus

During early stages of Alzheimer's disease (AD), synaptic dysfunction induced by toxic amyloid-β (Aβ) is present before the accumulation of histopathological hallmarks of the disease. This scenario produces impaired functioning of neuronal networks, altered patterns of synchronous activity and severe functional deficits mainly due to hyperexcitability of hippocampal networks. The molecular mech...

متن کامل

Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons.

A diversity of ion channels contributes to the active properties of neuronal dendrites. From the apical dendrites of hippocampal CA1 pyramidal neurons, we recorded inwardly rectifying K+ channels with a single-channel conductance of 33 pS. The inwardly rectifying K+ channels were constitutively active at the resting membrane potential. The amount of constitutive channel activity was significant...

متن کامل

Emerging concepts for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease

G protein-gated inwardly rectifying potassium (GIRK) channels hyperpolarize neurons in response to the activation of many G-protein coupled receptors and thus control the excitability of neurons through GIRK-mediated self-inhibition, slow synaptic potentials and volume transmission. GIRK channel function and trafficking are highly dependent on their subunit composition. Pharmacological investig...

متن کامل

Ketones Prevent Oxidative Impairment of Hippocampal Synaptic Integrity through K<sub>ATP</sub> Channels

Dietary and metabolic therapies are increasingly being considered for a variety of neurological disorders, based in part on growing evidence for the neuroprotective properties of the ketogenic diet (KD) and ketones. Earlier, we demonstrated that ketones afford hippocampal synaptic protection against exogenous oxidative stress, but the mechanisms underlying these actions remain unclear. Recent s...

متن کامل

New type of synaptically mediated epileptiform activity independent of known glutamate and GABA receptors.

It is well known that excitatory synaptic transmission at the hippocampal CA3-CA1 synapse depends on the binding of released glutamate to ionotropic receptors. Here we report that during long-term application of Cs+ (5 mM), stimulation of the Schaffer collateral-commisural pathway evokes an epileptic field potential (Cs-FP) in area CA1 of the rat hippocampal slice, which is resistant to antagon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013