Robin conditions on the Euclidean ball
نویسنده
چکیده
Techniques are presented for calculating directly the scalar functional determinant on the Euclidean d-ball. General formulae are given for Dirichlet and Robin boundary conditions. The method involves a large mass asymptotic limit which is carried out in detail for d = 2 and d = 4 incidentally producing some specific summations and identities.
منابع مشابه
A Collocation Method with Modified Equilibrium on Line Method for Imposition of Neumann and Robin Boundary Conditions in Acoustics (TECHNICAL NOTE)
A collocation method with the modified equilibrium on line method (ELM) forimposition of Neumann and Robin boundary conditions is presented for solving the two-dimensionalacoustical problems. In the modified ELM, the governing equations are integrated over the lines onthe Neumann (Robin) boundary instead of the Neumann (Robin) boundary condition equations. Inother words, integration domains are...
متن کاملFrom the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
متن کاملParabolic starlike mappings of the unit ball $B^n$
Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$ where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...
متن کاملOn the Euclidean metric entropy of convex bodies
We will explain the subject in a little more detail while briefly describing the organization of the paper. In order to be more precise, let B 2 denote the unit Euclidean ball in R. For a symmetric convex body K ⊂ R let N(K, εB 2 ) be the smallest number of Euclidean balls of radius ε needed to cover K, and finally let M∗(K) be a half of the mean width of K (see (2.1) and (2.2) below). Section ...
متن کاملGyrovector Spaces on the Open Convex Cone of Positive Definite Matrices
In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces, which are the Einstein and M"{o}bius gyrovector spaces. We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...
متن کامل