Engineering nicking enzymes that preferentially nick 5-methylcytosine-modified DNA
نویسندگان
چکیده
N.ϕGamma is a strand-specific and site-specific DNA nicking enzyme (YCG↓GT or AC↑CGR). Here we describe the isolation of single and double mutants of N.ϕGamma with attenuated activity. The nicking domains (NDs) of E59A and 11 double mutants were fused to the 5mCG-binding domain of MBD2 and generated fusion enzymes that preferentially nick 5mCG-modified DNA. The CG dinucleotide can be modified by C5 methyltransferases (MTases) such as M.SssI, M.HhaI or M.HpaII to create composite sites AC↑YGG N(8-15) 5mCG. We also constructed a fusion enzyme 2xMBD2-ND(N.BceSVIII) targeting more frequent composite sites AS↑YS N(5-12) 5mCG in Mn2+ buffer. 5mCG-dependent nicking requires special digestion conditions in high salt (0.3 M KCl) or in Ni2+ buffer. The fusion enzyme can be used to nick and label 5mCG-modified plasmid and genomic DNAs with fluorescently labeled Cy3-dUTP and potentially be useful for diagnostic applications, DNA sequencing and optical mapping of epigenetic markers. The importance of the predicted catalytic residues D89, H90, N106 and H115 in N.ϕGamma was confirmed by mutagenesis. We found that the wild-type enzyme N.ϕGamma prefers to nick 5mCG-modified DNA in Ni2+ buffer even though the nicking activity is sub-optimal compared to the activity in Mg2+ buffer.
منابع مشابه
Ordered distribution of modified bases in the DNA of a dinoflagellate.
In DNA of the dinoflagellate Crypthecodinium cohnii, 38% of the thymine is replaced by the modified base 5-hydroxymethyluracil, and approximately 3% of the cytosine is replaced by 5-methylcytosine. Both of the modified bases are non-randomly distributed in the DNA. Determinations of 3' nearest neighbors show that HOMeU is preferentially located in the dinucleotides HOMeUpA and HOMeUpC. Pyrimidi...
متن کاملThe isolation of strand-specific nicking endonucleases from a randomized SapI expression library.
The Type IIS restriction endonuclease SapI recognizes the DNA sequence 5'-GCTCTTC-3' (top strand by convention) and cleaves downstream (N1/N4) indicating top- and bottom-strand spacing, respectively. The asymmetric nature of DNA recognition presented the possibility that one, if not two, nicking variants might be created from SapI. To explore this possibility, two parallel selection procedures ...
متن کاملDiscovery of natural nicking endonucleases Nb.BsrDI and Nb.BtsI and engineering of top-strand nicking variants from BsrDI and BtsI
BsrDI and BtsI restriction endonucleases recognize and cleave double-strand DNA at the sequences GCAATG (2/0) and GCAGTG (2/0), respectively. We have purified and partially characterized these two enzymes, and analyzed the genes that encode them. BsrDI and BtsI are unusual in two respects: each cleaves DNA as a heterodimer of one large subunit (B subunit) and one small subunit (A subunit); and,...
متن کاملEndonuclease G preferentially cleaves 5-hydroxymethylcytosine-modified DNA creating a substrate for recombination
5-hydroxymethylcytosine (5hmC) has been suggested to be involved in various nucleic acid transactions and cellular processes, including transcriptional regulation, demethylation of 5-methylcytosine and stem cell pluripotency. We have identified an activity that preferentially catalyzes the cleavage of double-stranded 5hmC-modified DNA. Using biochemical methods we purified this activity from mo...
متن کاملStructure-guided sequence specificity engineering of the modification-dependent restriction endonuclease LpnPI
The eukaryotic Set and Ring Associated (SRA) domains and structurally similar DNA recognition domains of prokaryotic cytosine modification-dependent restriction endonucleases recognize methylated, hydroxymethylated or glucosylated cytosine in various sequence contexts. Here, we report the apo-structure of the N-terminal SRA-like domain of the cytosine modification-dependent restriction enzyme L...
متن کامل