Maximum likelihood endpoint detection with time-domain features

نویسندگان

  • Marco Orlandi
  • Alfiero Santarelli
  • Daniele Falavigna
چکیده

In this paper we propose an effective, robust and computationally low-cost HMM-based start-endpoint detector for speech recognisers. Our first attempts follow the classical scheme feature extractor-Viterbi classifier (used for voice activity detection), followed by a post-processing stage, but the ultimate goal we pursue is a pure HMM-based architecture capable of performing the endpointing task. The features used for voice activity detection are energy and zero crossing rate, together with AMDF (Average Magnitude Difference Function), which proves to be a valid alternative to energy; further, we study the impact on performance of grammar structures and training conditions. In the end, we set the basis for the investigation of pure HMM-based architectures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new technique for bearing fault detection in the time-frequency domain

This paper presents a new Fast Kurtogram Method in the time-frequency domain using novel types of statistical features instead of the kurtosis. For this study, the problem of four classes for Bearing Fault Detection is investigated using various statistical features. This research is conducted in four stages. At first, the stability of each feature for each fault mode is investigated. Then, res...

متن کامل

Bearing Fault Detection Based on Maximum Likelihood Estimation and Optimized ANN Using the Bees Algorithm

Rotating machinery is the most common machinery in industry. The root of the faults in rotating machinery is often faulty rolling element bearings. This paper presents a technique using optimized artificial neural network by the Bees Algorithm for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (maximum likelihood estima...

متن کامل

A Novel Intelligent Fault Diagnosis Approach for Critical Rotating Machinery in the Time-frequency Domain

The rotating machinery is a common class of machinery in the industry. The root cause of faults in the rotating machinery is often faulty rolling element bearings. This paper presents a novel technique using artificial neural network learning for automated diagnosis of localized faults in rolling element bearings. The inputs of this technique are a number of features (harmmean and median), whic...

متن کامل

Word Endpoint Detection Using Dynamic Programming

The paper deals with the use of dynamic programming for word endpoint detection in isolated word recognition. Endpoint detection is based on likelihood maximization. Expectation maximization approach is used to deal with the problem of unknown parameters. Speech signal and background noise energy is used as features for making decision. Performance of the proposed approach was evaluated using i...

متن کامل

ESTIMATION OF THE TAIL OFA DISTRIBUTION USING EXTREMEORDER STATISTICSby

SUMMARY For distributions with nite upper endpoint we consider estimation of the upper tail of the distribution using only the r largest observations in a random sample of size n. Of course any results for upper endpoints are readily adapted, via the r smallest observations, to the case of a lower endpoint. This problem has been discussed by several authors; for example, Hall (1982) considered ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003