Validation of Canopy Height Profile methodology for small-footprint full-waveform airborne LiDAR data in a discontinuous canopy environment
نویسندگان
چکیده
http://dx.doi.org/10.1016/j.isprsjprs.2015.03.001 0924-2716/ 2015 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). ⇑ Corresponding author. Tel.: +44 (0) 118 378 5215; fax: +44 (0) 118 378 6413. E-mail address: [email protected] (K.D. Fieber). Karolina D. Fieber a,⇑, Ian J. Davenport , Mihai A. Tanase , James M. Ferryman , Robert J. Gurney , Victor M. Becerra , Jeffrey P. Walker , Jorg M. Hacker f
منابع مشابه
Processing Full-waveform Lidar Data to Extract Forest Parameters and Digital Terrain Model: Validation in an Alpine Coniferous Forest
Small footprint discrete return lidar data have already proved useful for providing information on forest areas. During the last decade, a new generation of airborne laser scanners, called full-waveform (FW) lidar systems, has emerged. They digitize and record the entire backscattered signal of each emitted pulse. Fullwaveform data hold large potentialities. In this study, we investigated the p...
متن کاملApplication of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations: Tests on LVIS and GLAS
Forest canopy height is an important biophysical variable for quantifying carbon storage in terrestrial ecosystems. Active light detection and ranging (lidar) sensors with discrete-return or waveform lidar have produced reliable measures of forest canopy height. However, rigorous procedures are required for an accurate estimation, especially when using waveform lidar, since backscattered signal...
متن کاملUsing airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates
Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser he...
متن کاملTropical Forests of Réunion Island Classified from Airborne Full-Waveform LiDAR Measurements
From an unprecedented experiment using airborne measurements performed over the rich forests of Réunion Island, this paper aims to present a methodology for the classification of diverse tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR. This objective is met through the retrieval of both the canopy height and the Leaf Area Index (LAI), obtained as ...
متن کاملDevelopment of Vegetation Structure Inputs From ICESat, SRTM and MODIS Satellite Data for a Mixed Canopy Dynamic Global Terrestrial Ecosystem Model
State of the Problem Lidar remote sensing provides measurements of horizontal and vertical vegetation structure of ecosystems which will be critical for estimating global carbon storage and assessing ecosystem response to climate change and natural and anthropogenic disturbances. However, no consistent approach currently exists to derive the lidar based vegetation structure information required...
متن کامل