Nonlinear enhancement of noisy speech, using continuous attractor dynamics formed in recurrent neural networks
نویسندگان
چکیده
Here, formation of continuous attractor dynamics in a nonlinear recurrent neural network is used to achieve a nonlinear speech denoising method, in order to implement robust phoneme recognition and information retrieval. Formation of attractor dynamics in recurrent neural network is first carried out by training the clean speech subspace as the continuous attractor. Then, it is used to recognize noisy feedforward network is compared to the same one with a recurrent connection in its hidden layer. The structure and training of this recurrent connection, is designed in such a way that the network learns to denoise the signal step by step, using properties of attractors it has formed, along with phone recognition. Using these connections, the recognition accuracy is improved 21% for the stationary signal and 14% for the nonstationary one with 0db SNR, in respect to a reference model which is a feedforward neural network. & 2011 Elsevier B.V. All rights reserved.
منابع مشابه
بهبود بازشناسی مقاوم الگو در شبکه های عصبی بازگشتی جاذب از طریق به کارگیری دینامیک های آشوب گونه
In this paper, two kinds of chaotic neural networks are proposed to evaluate the efficiency of chaotic dynamics in robust pattern recognition. The First model is designed based on natural selection theory. In this model, attractor recurrent neural network, intelligently, guides the evaluation of chaotic nodes in order to obtain the best solution. In the second model, a different structure of ch...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملSpeech Enhancement for a Noise-Robust Text-to-Speech Synthesis System Using Deep Recurrent Neural Networks
Quality of text-to-speech voices built from noisy recordings is diminished. In order to improve it we propose the use of a recurrent neural network to enhance acoustic parameters prior to training. We trained a deep recurrent neural network using a parallel database of noisy and clean acoustics parameters as input and output of the network. The database consisted of multiple speakers and divers...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملA Fully Convolutional Neural Network for Speech Enhancement
In hearing aids, the presence of babble noise degrades hearing intelligibility of human speech greatly. However, removing the babble without creating artifacts in human speech is a challenging task in a low SNR environment. Here, we sought to solve the problem by finding a ‘mapping’ between noisy speech spectra and clean speech spectra via supervised learning. Specifically, we propose using ful...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 74 شماره
صفحات -
تاریخ انتشار 2011